大数据开发岗面试复习30天冲刺 - 日积月累,每日五题【Day18】——Spark5

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据开发岗面试复习30天冲刺 - 日积月累,每日五题【Day18】——Spark5

停🤚
不要往下滑了,
默默想5min,
看看这5道面试题你都会吗?

面试题 01、Spark on Mesos中,什么是的粗粒度分配,什么是细粒度分配,各自的优点和缺点是什么?
面试题02、driver的功能是什么?
面试题 03、Spark技术栈有哪些组件,每个组件都有什么功能,适合什么应用场景?
面试题04、Spark中Worker的主要工作是什么?
面试题05、Mapreduce和Spark的都是并行计算,那么他们有什么相同和区别?

以下答案仅供参考:

面试题 01、Spark on Mesos中,什么是的粗粒度分配,什么是细粒度分配,各自的优点和缺点是什么?

1)粗粒度:启动时就分配好资源, 程序启动,后续具体使用就使用分配好的资源,不需要再分配资源;优点:作业特别多时,资源复用率高,适合粗粒度;缺点:容易资源浪费,假如一个job有1000个task,完成了999个,还有一个没完成,那么使用粗粒度,999个资源就会闲置在那里,资源浪费。

2)细粒度分配:用资源的时候分配,用完了就立即回收资源,启动会麻烦一点,启动一次分配一次,会比较麻烦。

面试题02、driver的功能是什么?

1)一个Spark作业运行时包括一个Driver进程,也是作业的主进程,具有main函数,并且有SparkContext的实例,是程序的入口点;

2)功能:负责向集群申请资源,向master注册信息,负责了作业的调度,负责作业的解析、生成Stage并调度Task到Executor上。包括DAGScheduler, TaskScheduler。

面试题03、Spark技术栈有哪些组件,每个组件都有什么功能,适合什么应用场景?

可以画一个这样的技术栈图先,然后分别解释下每个组件的功能和场景

1)Spark core:是其它组件的基础,spark的内核,主要包含:有向循环图、RDD、Lingage、Cache、broadcast等,并封装了底层通讯框架, 是Spark的基础。

2)SparkStreaming是一个对实时数据流进行高通量、容错处理的流式处理系统,可以对多种数据源(如Kafka、Flume、Twitter、Zero和TCP 套接字) 进行类似Map、Reduce和Join等复杂操作,将流式计算分解成一系列短小的批处理作业。 3)Spark sql:Shark是SparkSQL的前身,Spark SQL的一个重要特点是其能够统一处理关系表和RDD,使得开发人员可以轻松地使用SQL命令进行外部查询, 同时进行更复杂的数据分析。

4)BlinkDB :是一个用于在海量数据上运行交互式 SQL 查询的大规模并行查询引擎,它允许用户通过权衡数据精度来提升查询响应时间,其数据的精度 被控制在允许的误差范围内。

5)MLBase是Spark生态圈的一部分专注于机器学习,让机器学习的门槛更低,让一些可能并不了解机器学习的用户也能方便地使用MLbase。MLBase分为四部分:MLlib、MLI、ML Optimizer和MLRuntime。

6)GraphX是Spark中用于图和图并行计算。huffle操作或者仅有较少shuffle操作的Spark作业,可以大大减少性能开销。

面试题04、Spark中Worker的主要工作是什么?

主要功能:管理当前节点内存,CPU的使用状况,接收master分配过来的资源指令,通过ExecutorRunner启动程序分配任务,worker就类似于包工头, 管理分配新进程,做计算的服务,相当于process服务。

需要注意的是:

1)worker会不会汇报当前信息给master,worker心跳给master主要只有workid,它不会发送资源信息以心跳的方式给mater,master分配的时候就知道work, 只有出现故障的时候才会发送资源。

2)worker不会运行代码,具体运行的是Executor是可以运行具体appliaction写的业务逻辑代码,操作代码的节点,它不会运行程序的代码的。

面试题05、Mapreduce和Spark的都是并行计算,那么他们有什么相同和区别?

两者都是用mr模型来进行并行计算:

1)hadoop的一个作业称为job,job里面分为map task和reduce task,每个task都是在自己的进程中运行的,当task结束时,进程也会结束。

2)spark用户提交的任务成为application,一个application对应一个SparkContext,app中存在多个job,每触发一次action操作就会产生一个job。 这些job可以并行或串行执行,每个job中有多个stage,stage是shuffle过程中DAGSchaduler通过RDD之间的依赖关系划分job而来的,每个stage里面有多个task, 组成taskset有TaskSchaduler分发到各个executor中执行,executor的生命周期是和app一样的,即使没有job运行也是存在的,所以task可以快速启动读取内存 进行计算。

3)hadoop的job只有map和reduce操作,表达能力比较欠缺而且在mr过程中会重复的读写hdfs,造成大量的io操作,多个job需要自己管理关系。

4)spark的迭代计算都是在内存中进行的,API中提供了大量的RDD操作如join,groupby等,而且通过DAG图可以实现良好的容错。

总结

今天我们复习了面试中常考的Spark相关的五个问题,你做到心中有数了么?

其实做这个专栏我也有私心,就是希望借助每天写一篇面试题,督促自己学习,以免在面试期间尴尬!平时不流汗,面试多流泪!

对了,如果你的朋友也在准备面试,请将这个系列扔给他,

好了,今天就到这里,学废了的同学,记得在评论区留言:打卡。给同学们以激励。


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
监控 物联网 Windows
MQTT常见问题之mqtt自动断开了连接如何解决
MQTT(Message Queuing Telemetry Transport)是一个轻量级的、基于发布/订阅模式的消息协议,广泛用于物联网(IoT)中设备间的通信。以下是MQTT使用过程中可能遇到的一些常见问题及其答案的汇总:
|
算法 jenkins 持续交付
【MATLAB 】 EEMD-ARIMA联合时序预测算法,科研创新优选算法
【MATLAB 】 EEMD-ARIMA联合时序预测算法,科研创新优选算法
324 0
|
Web App开发 安全 Linux
如何安装 Fedy,并使用它来安装常见的第三方软件
如何安装 Fedy,并使用它来安装常见的第三方软件
506 0
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
开发工具 git
Git:error: remote origin already exists
Git:error: remote origin already exists
398 2
|
机器学习/深度学习 人工智能 物联网
未来操作系统的发展趋势与挑战
随着科技的不断进步,操作系统作为计算机系统的核心,也在不断演化和发展。本文从人工智能、物联网、云计算等方面探讨了未来操作系统的发展趋势和面临的挑战,展望了操作系统在技术革新中的重要地位。
N..
|
开发框架 Dart 开发工具
搭建Flutter开发环境
搭建Flutter开发环境
N..
324 0
|
数据可视化 Linux Apache
CentOS部署Apache Superset大数据可视化BI分析工具并实现无公网IP远程访问
CentOS部署Apache Superset大数据可视化BI分析工具并实现无公网IP远程访问
|
存储 Cloud Native 关系型数据库
Ganos矢量栅格数据快速入库方法简介
本文介绍了Ganos提供的矢量、栅格数据高效入库方法,帮助用户快速理解云原生数据库空间数据的写入方案,以便更好的使用Ganos矢栅数据的处理能力。
|
存储 Linux iOS开发
聊聊几款文件同步备份工具,你更喜欢哪一款呢?
文件备份对企业的价值对于绝大多数人而言,电脑中的不少文件对于我们来说都非常重要,一旦丢失,损失将会难以估量。随着网络威胁的不断发展和变得越来越复杂,文件传输和托管文件传输之间的区别对于企业来说至关重要。应用先进技术管理文件传输的挑战在于区分以文档为中心的协作文件共享和自动...
2434 1
聊聊几款文件同步备份工具,你更喜欢哪一款呢?

热门文章

最新文章