☆打卡算法☆LeetCode 140. 单词拆分 II 算法解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: ☆打卡算法☆LeetCode 140. 单词拆分 II 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“给定一个字符串s和字符串列表wordDict作为字典,在字符串s中增加空格来构建一个句子,使得句子中所有的单词都在词典中,以任意顺序返回这些句子。”

2、题目描述

给定一个字符串 s 和一个字符串字典 wordDict ,在字符串 s 中增加空格来构建一个句子,使得句子中所有的单词都在词典中。以任意顺序 返回所有这些可能的句子。

注意:词典中的同一个单词可能在分段中被重复使用多次。

示例 1:
输入:s = "catsanddog", wordDict = ["cat","cats","and","sand","dog"]
输出:["cats and dog","cat sand dog"]
示例 2:
输入:s = "pineapplepenapple", wordDict = ["apple","pen","applepen","pine","pineapple"]
输出:["pine apple pen apple","pineapple pen apple","pine applepen apple"]
解释: 注意你可以重复使用字典中的单词。

二、解题

1、思路分析

这道题是139题的进阶,139题要求判断是否可以拆分,这道题要求返回所有可能的拆分结果。

139题使用了动态规划思路来判断是否可以拆分,这道题也可以使用动态规划思路,但是如果使用动态规划从下向上拆分,无法提前判断是否可以拆分,在不能拆分的时候会超时。

那么可以使用记忆化搜索,在搜索过程中将不可以拆分的情况进行剪枝。

那么记忆化搜索具体怎么做的?

首先,使用一个哈希表存储字符串s的每个下标和从该下标开始的部分组成的句子列表。

在回溯的过程中,如果遇到已经访问过的下标,可以直接从哈希表中得到结果,不需要重复计算;

如果某个下标无法匹配,则哈希表中该下标对应的是空列表,因此可以对不可以拆分的情况进行剪枝。

2、代码实现

代码参考:

class Solution {
    public List<String> wordBreak(String s, List<String> wordDict) {
        Map<Integer, List<List<String>>> map = new HashMap<Integer, List<List<String>>>();
        List<List<String>> wordBreaks = backtrack(s, s.length(), new HashSet<String>(wordDict), 0, map);
        List<String> breakList = new LinkedList<String>();
        for (List<String> wordBreak : wordBreaks) {
            breakList.add(String.join(" ", wordBreak));
        }
        return breakList;
    }
    public List<List<String>> backtrack(String s, int length, Set<String> wordSet, int index, Map<Integer, List<List<String>>> map) {
        if (!map.containsKey(index)) {
            List<List<String>> wordBreaks = new LinkedList<List<String>>();
            if (index == length) {
                wordBreaks.add(new LinkedList<String>());
            }
            for (int i = index + 1; i <= length; i++) {
                String word = s.substring(index, i);
                if (wordSet.contains(word)) {
                    List<List<String>> nextWordBreaks = backtrack(s, length, wordSet, i, map);
                    for (List<String> nextWordBreak : nextWordBreaks) {
                        LinkedList<String> wordBreak = new LinkedList<String>(nextWordBreak);
                        wordBreak.offerFirst(word);
                        wordBreaks.add(wordBreak);
                    }
                }
            }
            map.put(index, wordBreaks);
        }
        return map.get(index);
    }
}

1702360679088.jpg

3、时间复杂度

时间复杂度:

时间复杂度为指数级别,无法进行具体分析。

空间复杂度:

空间复杂度为指数级别,无法进行具体分析。

三、总结

对于字符串s 拆分后组成句子,可以有很多种拆分方法,这些其实不是最终答案,但是在记忆化搜索过程中这些结果都会存下来。

这一部分占用的空间至少有O(n * 2n),其实n是字符串的长度,也就是分割方法有2n,每一种方法需要O(n)的字符串进行存储。

对于时间复杂度来说,写入O(n * 2n)空间至少也需要O(n * 2n)的空间,因此时间复杂度同样也是指数级。

相关文章
|
4天前
|
存储 监控 算法
探秘员工泄密行为防线:基于Go语言的布隆过滤器算法解析
在信息爆炸时代,员工泄密行为对企业构成重大威胁。本文聚焦布隆过滤器(Bloom Filter)这一高效数据结构,结合Go语言实现算法,帮助企业识别和预防泄密风险。通过构建正常操作“指纹库”,实时监测员工操作,快速筛查可疑行为。示例代码展示了如何利用布隆过滤器检测异常操作,并提出优化建议,如调整参数、结合日志分析系统等,全方位筑牢企业信息安全防线,守护核心竞争力。
|
7天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
25天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
50 17
|
30天前
|
算法 搜索推荐 Java
【潜意识Java】深度解析黑马项目《苍穹外卖》与蓝桥杯算法的结合问题
本文探讨了如何将算法学习与实际项目相结合,以提升编程竞赛中的解题能力。通过《苍穹外卖》项目,介绍了订单配送路径规划(基于动态规划解决旅行商问题)和商品推荐系统(基于贪心算法)。这些实例不仅展示了算法在实际业务中的应用,还帮助读者更好地准备蓝桥杯等编程竞赛。结合具体代码实现和解析,文章详细说明了如何运用算法优化项目功能,提高解决问题的能力。
62 6
|
2月前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
2月前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
2月前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
281 30
|
2月前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
523 15
|
3月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
3月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
98 4