Python算法——快速排序

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: Python算法——快速排序

快速排序(Quick Sort)是一种高效的分治排序算法,它选择一个基准元素,将数组分成两个子数组,小于基准的放在左边,大于基准的放在右边,然后递归地排序子数组。快速排序通常比冒泡排序和选择排序更高效,特别适用于大型数据集。本文将详细介绍快速排序的工作原理和Python实现。

快速排序的工作原理

快速排序的基本思想是:

  1. 选择一个基准元素(通常是数组中的某个元素)。
  2. 将数组分成两个子数组,一个包含小于基准的元素,另一个包含大于基准的元素。
  3. 递归地对两个子数组进行排序。

分治的关键在于如何选择基准元素以及如何分割数组。一种常见的方法是选择数组中间的元素作为基准,然后将数组分成两部分,一部分包含小于基准的元素,另一部分包含大于基准的元素。然后,递归地对这两部分进行排序。

下面是一个示例,演示快速排序的过程:

原始数组:[6, 5, 3, 1, 8, 7, 2, 4]

  1. 选择基准元素(通常选择中间元素,如 3)。
  2. 分割数组,小于 3 的元素在左边,大于 3 的元素在右边:[2, 1, 3, 5, 8, 7, 6, 4]
  3. 递归地对左边的子数组进行排序,结果为 [1, 2, 3]。
  4. 递归地对右边的子数组进行排序,结果为 [4, 5, 6, 7, 8]。
  5. 合并两个子数组,得到排序后的数组:[1, 2, 3, 4, 5, 6, 7, 8]。

    Python实现快速排序

    下面是Python中的快速排序实现:
def quick_sort(arr):
    if len(arr) <= 1:
        return arr

    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]

    return quick_sort(left) + middle + quick_sort(right)
  • arr 是待排序的数组。
  • 如果数组长度小于等于 1,则已经有序,直接返回。
  • 选择基准元素 pivot,通常选择中间元素。
  • 使用列表推导式将数组分成三部分:小于 pivot、等于 pivot 和大于 pivot 的元素。
  • 递归地对左右两部分进行排序,然后合并结果。

    示例代码

    下面是一个使用Python进行快速排序的示例代码:
def quick_sort(arr):
    if len(arr) <= 1:
        return arr

    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]

    return quick_sort(left) + middle + quick_sort(right)

# 测试排序
arr = [6, 5, 3, 1, 8, 7, 2, 4]
sorted_arr = quick_sort(arr)
print("排序后的数组:", sorted_arr)

时间复杂度

快速排序的平均时间复杂度为 O(n log n),其中 n 是数组的长度。它是一种高效的排序算法,通常优于冒泡排序和选择排序。然而,在最坏情况下,时间复杂度可能达到 O(n^2)。

总之,快速排序是一种高效的排序算法,通过选择基准元素和分割数组,递归地对子数组进行排序,实现了对数组的快速排序。了解快速排序有助于理解排序算法的高效性,并为大型数据集的排序提供了一个强大的工具。

目录
相关文章
|
2月前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
2月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
53 1
|
2月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
64 4
|
3月前
|
PyTorch 算法框架/工具 C++
人工智能算法python程序运行环境安装步骤整理
本教程详细介绍Python与AI开发环境的配置步骤,涵盖软件下载、VS2017安装、Anaconda配置、PyCharm设置及组件安装等内容,适用于Windows系统,助你快速搭建开发环境。
|
4月前
|
算法 Python
Apriori算法的Python实例演示
经过运行,你会看到一些集合出现,每个集合的支持度也会给出。这些集合就是你想要的,经常一起被购买的商品组合。不要忘记,`min_support`参数将决定频繁项集的数量和大小,你可以根据自己的需要进行更改。
157 18
|
5月前
|
算法 搜索推荐
快速排序-数据结构与算法
快速排序(Quick Sort)是一种基于分治法的高效排序算法。其核心思想是通过选择基准(pivot),将数组划分为左右两部分,使得左侧元素均小于基准,右侧元素均大于基准,然后递归地对左右两部分进行排序。时间复杂度平均为 O(n log n),最坏情况下为 O(n²)(如数组已有序)。空间复杂度为 O(1),属于原地排序,但稳定性不佳。 实现步骤包括编写 `partition` 核心逻辑、递归调用的 `quickSort` 和辅助函数 `swap`。优化方法有随机化基准和三数取中法,以减少最坏情况的发生。
236 13
|
4月前
|
存储 机器学习/深度学习 算法
论上网限制软件中 Python 动态衰减权重算法于行为管控领域的创新性应用
在网络安全与行为管理的学术语境中,上网限制软件面临着精准识别并管控用户不合规网络请求的复杂任务。传统的基于静态规则库或固定阈值的策略,在实践中暴露出较高的误判率与较差的动态适应性。本研究引入一种基于 “动态衰减权重算法” 的优化策略,融合时间序列分析与权重衰减机制,旨在显著提升上网限制软件的实时决策效能。
120 2
|
算法 Python
python实现【快速排序】(QuickSort)
python实现【快速排序】(QuickSort)
python实现【快速排序】(QuickSort)
|
Python
python实现快速排序
python实现快速排序
171 0

热门文章

最新文章

推荐镜像

更多