106 python高级 - functools

简介: 106 python高级 - functools

functools 是python2.5被引人的,一些工具函数放在此包里。

python2.7中

python3.5中

import functools
dir(functools)

运行结果:

['MappingProxyType',
 'RLock',
 'WRAPPER_ASSIGNMENTS',
 'WRAPPER_UPDATES',
 'WeakKeyDictionary',
 '_CacheInfo',
 '_HashedSeq',
 '__all__',
 '__builtins__',
 '__cached__',
 '__doc__',
 '__file__',
 '__loader__',
 '__name__',
 '__package__',
 '__spec__',
 '_c3_merge',
 '_c3_mro',
 '_compose_mro',
 '_convert',
 '_find_impl',
 '_ge_from_gt',
 '_ge_from_le',
 '_ge_from_lt',
 '_gt_from_ge',
 '_gt_from_le',
 '_gt_from_lt',
 '_le_from_ge',
 '_le_from_gt',
 '_le_from_lt',
 '_lru_cache_wrapper',
 '_lt_from_ge',
 '_lt_from_gt',
 '_lt_from_le',
 '_make_key',
 'cmp_to_key',
 'get_cache_token',
 'lru_cache',
 'namedtuple',
 'partial',
 'partialmethod',
 'reduce',
 'singledispatch',
 'total_ordering',
 'update_wrapper',
 'wraps']

python3中增加了更多工具函数,做业务开发时大多情况下用不到,此处介绍使用频率较高的2个函数。

partial函数(偏函数)

把一个函数的某些参数设置默认值,返回一个新的函数,调用这个新函数会更简单。

import functools
def showarg(*args, **kw):
    print(args)
    print(kw)
p1=functools.partial(showarg, 1,2,3)
p1()
p1(4,5,6)
p1(a='python', b='itcast')
p2=functools.partial(showarg, a=3,b='linux')
p2()
p2(1,2)
p2(a='python', b='itcast')

wraps函数

使用装饰器时,有一些细节需要被注意。例如,被装饰后的函数其实已经是另外一个函数了(函数名等函数属性会发生改变)。

添加后由于函数名和函数的doc发生了改变,对测试结果有一些影响,例如:

def note(func):
    "note function"
    def wrapper():
        "wrapper function"
        print('note something')
        return func()
    return wrapper
@note
def test():
    "test function"
    print('I am test')
test()
print(test.__doc__)

运行结果:

note something
I am test
wrapper function

所以,Python的functools包中提供了一个叫wraps的装饰器来消除这样的副作用。例如:

import functools
def note(func):
    "note function"
    @functools.wraps(func)
    def wrapper():
        "wrapper function"
        print('note something')
        return func()
    return wrapper
@note
def test():
    "test function"
    print('I am test')
test()
print(test.__doc__)

运行结果:

note something
I am test
test function
目录
相关文章
|
监控 测试技术 Python
颠覆传统!Python闭包与装饰器的高级实战技巧,让你的项目效率翻倍
【7月更文挑战第7天】Python的闭包与装饰器是强大的工具。闭包是能记住外部作用域变量的内部函数,常用于动态函数创建和工厂模式。例如,`make_power`返回含外部变量`n`的`power`闭包。装饰器则允许在不修改函数代码的情况下添加新功能,如日志或性能监控。`my_decorator`函数接收一个函数并返回包装后的函数,添加了前后处理逻辑。掌握这两者,可提升编程效率和灵活性。
156 3
|
缓存 Python
在Python中,`functools`模块提供了一个非常有用的装饰器`lru_cache()`,它实现了最近最少使用(Least Recently Used, LRU)缓存策略。
在Python中,`functools`模块提供了一个非常有用的装饰器`lru_cache()`,它实现了最近最少使用(Least Recently Used, LRU)缓存策略。
232 10
|
机器学习/深度学习 数据采集 算法
Python编程语言进阶学习:深入探索与高级应用
【7月更文挑战第23天】Python的进阶学习是一个不断探索和实践的过程。通过深入学习高级数据结构、面向对象编程、并发编程、性能优化以及在实际项目中的应用,你将能够更加熟练地运用Python解决复杂问题,并在编程道路上走得更远。记住,理论知识只是基础,真正的成长来自于不断的实践和反思。
|
数据采集 Java C语言
Python面向对象的高级动态可解释型脚本语言简介
Python是一种面向对象的高级动态可解释型脚本语言。
184 3
|
机器学习/深度学习 数据采集 人工智能
Python 是一种广泛使用的高级编程语言
【7月更文挑战第17天】Python 是一种广泛使用的高级编程语言
507 2
|
存储 算法 Python
“解锁Python高级数据结构新姿势:图的表示与遍历,让你的算法思维跃升新高度
【7月更文挑战第13天】Python中的图数据结构用于表示复杂关系,通过节点和边连接。常见的表示方法是邻接矩阵(适合稠密图)和邻接表(适合稀疏图)。图遍历包括DFS(深度优先搜索)和BFS(广度优先搜索):DFS深入探索分支,BFS逐层访问邻居。掌握这些技巧对优化算法和解决实际问题至关重要。**
183 1
|
存储 算法 调度
惊呆了!Python高级数据结构堆与优先队列,竟然能这样优化你的程序性能!
【7月更文挑战第10天】Python的heapq模块实现了堆和优先队列,提供heappush和heappop等函数,支持O(log n)时间复杂度的操作。优先队列常用于任务调度和图算法,优化性能。例如,Dijkstra算法利用最小堆加速路径查找。堆通过列表存储,内存效率高。示例展示了添加、弹出和自定义优先级元素。使用堆优化程序,提升效率。
199 2
|
程序员 Python
程序员必看!Python闭包与装饰器的高级应用,让你的代码更优雅、更强大
【7月更文挑战第7天】Python中的闭包和装饰器是高级特性,用于增强代码功能。闭包是内部函数记住外部作用域的变量,常用于动态函数和函数工厂。示例展示了`make_multiplier_of`返回记住n值的`multiplier`闭包。装饰器则是接收函数并返回新函数的函数,用于不修改原函数代码就添加功能。`my_decorator`装饰器通过`@`语法应用到`say_hello`函数上,展示了在调用前后添加额外行为的能力。这两种技术能提升代码的优雅性和效率。
125 3
|
算法 调度 Python
Python高手必备!堆与优先队列的高级应用,掌握它们,技术路上畅通无阻!
【7月更文挑战第9天】Python的heapq模块实现了堆数据结构,提供O(log n)操作如`heappush`和`heappop`。堆是完全二叉树,用于优先队列,保证最大/最小元素快速访问。例如,最小堆弹出最小元素,常用于Dijkstra算法找最短路径、Huffman编码压缩数据及任务调度。通过`heappush`和`heappop`可创建和管理优先队列,如`(优先级, 数据)`元组形式。理解并运用这些概念能优化算法效率,解决复杂问题。
186 2
|
Python
Python黑魔法揭秘:闭包与装饰器的高级玩法,让你代码飞起来
【7月更文挑战第7天】Python的闭包和装饰器是提升代码效率的神器。闭包是能记住外部作用域变量的内部函数,常用于动态函数创建。示例中,`make_multiplier_of`返回一个保留`n`值的闭包。装饰器则是一个接收函数并返回新函数的函数,用于在不修改原函数情况下添加功能,如日志或性能追踪。`@my_decorator`装饰的`say_hello`函数在执行时会自动加上额外操作。掌握这两者,能让Python代码更优雅、强大。**
117 1