【深度学习】实验15 使用CNN完成MNIST手写体识别(Keras)

简介: 【深度学习】实验15 使用CNN完成MNIST手写体识别(Keras)

使用CNN完成MNIST手写体识别(Keras)

卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习算法,是处理具有类似网格结构的数据的强大工具,例如图像和声音。CNN主要用于图像识别、语音识别、自然语言处理等领域,是目前计算机视觉领域最有效的算法之一。


卷积神经网络的主要特点是局部连接、权值共享和池化。局部连接意味着每个神经元仅与输入数据的一小部分相连;权值共享意味着所有的神经元使用相同的权值矩阵进行卷积计算;池化则是在卷积计算之后对输出进行降采样。这些特性使得CNN非常适合处理图像数据。


CNN的结构通常由多个卷积层、池化层和全连接层组成,其中卷积层和池化层用于提取图像的特征,全连接层则用于将这些特征映射到输出结果上。在训练过程中,CNN通过反向传播算法更新权值矩阵,使得网络能够自动学习到最适合任务的特征表示。在测试过程中,CNN通过前向传播算法将输入数据传入网络中,并得到输出结果。


CNN的应用非常广泛,例如人脸识别、物体识别、图像分类、图像分割、目标检测等。在物体识别和图像分类任务中,CNN通常使用ImageNet数据集进行训练,该数据集包含数百万张图像和数千个类别,是计算机视觉领域最大的数据集之一。在目标检测任务中,CNN通常使用Faster R-CNN、YOLO、SSD等网络结构,将物体位置和类别同时预测出来。


总的来说,卷积神经网络是一种非常强大的深度学习算法,具有优秀的图像处理能力,但在实际应用过程中也存在一些问题,例如训练时间长、需要更多的计算资源和数据集等。随着技术的不断进步和发展,相信CNN在未来会得到更广泛的应用。

1. 导入Keras库

# 导入相关库
from keras.datasets import mnist
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D, MaxPool2D, Flatten, Dropout, Dense
from keras.losses import categorical_crossentropy
from keras.optimizers import Adadelta
Using TensorFlow backend.

2. 数据集

# 导入数据集
train_X, train_y = mnist.load_data()[0]
train_X, train_y
(array([[[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   ...,
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]],
   [[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]]], dtype=uint8),
array([5, 0, 4, ..., 5, 6, 8], dtype=uint8))
# 训练集
train_X = train_X.reshape(-1, 28 ,28, 1)
train_X = train_X.astype('float32')
train_X /= 255
train_y = to_categorical(train_y, 10)

3. 构造神经网络

# 构造神经网络
model = Sequential()
model.add(Conv2D(32, (5, 5), activation='relu', input_shape=[28, 28, 1]))
model.add(Conv2D(64, (5, 5), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss=categorical_crossentropy, optimizer=Adadelta(), metrics=['accuracy'])

4. 训练模型

# 开始训练
batch_size = 100
epochs = 1
model.fit(train_X, train_y, batch_size=batch_size, epochs=epochs)
   WARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
   Epoch 1/1
   60000/60000 [==============================] - 190s 3ms/step - loss: 0.2228 - accuracy: 0.9316
   <keras.callbacks.callbacks.History at 0x7f7835e74940>

5. 测试模型

# 测试准确率
test_X, test_y = mnist.load_data()[1]
test_X = test_X.reshape(-1, 28, 28, 1)
test_X = test_X.astype('float32')
test_X /= 255
test_y = to_categorical(test_y, 10)
loss, accuracy = model.evaluate(test_X, test_y, verbose=1)
print('loss:%.4f accuracy:%.4f' %(loss, accuracy))
   10000/10000 [==============================] - 9s 919us/step
   loss:0.0467 accuracy:0.9844


目录
相关文章
|
11月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
将Keras训练好的.hdf5模型转换为TensorFlow的.pb模型,然后再转换为TensorRT支持的.uff格式,并提供了转换代码和测试步骤。
240 3
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
|
7月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
|
11月前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
648 1
|
11月前
|
机器学习/深度学习 监控 数据可视化
深度学习中实验、观察与思考的方法与技巧
在深度学习中,实验、观察与思考是理解和改进模型性能的关键环节。
258 5
|
11月前
|
机器学习/深度学习 数据挖掘 知识图谱
深度学习之材料科学中的自动化实验设计
基于深度学习的材料科学中的自动化实验设计是一个新兴领域,旨在通过机器学习模型,尤其是深度学习模型,来优化和自动化材料实验的设计流程。
165 2
|
11月前
|
机器学习/深度学习 编解码 算法
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
211 0
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络的步态识别matlab仿真,数据库采用CASIA库
**核心程序**: 完整版代码附中文注释,确保清晰理解。 **理论概述**: 利用CNN从视频中学习步态时空特征。 **系统框架**: 1. 数据预处理 2. CNN特征提取 3. 构建CNN模型 4. 训练与优化 5. 识别测试 **CNN原理**: 卷积、池化、激活功能强大特征学习。 **CASIA数据库**: 高质量数据集促进模型鲁棒性。 **结论**: CNN驱动的步态识别展现高精度,潜力巨大,适用于监控和安全领域。
|
11月前
|
机器学习/深度学习 移动开发 TensorFlow
深度学习之格式转换笔记(四):Keras(.h5)模型转化为TensorFlow(.pb)模型
本文介绍了如何使用Python脚本将Keras模型转换为TensorFlow的.pb格式模型,包括加载模型、重命名输出节点和量化等步骤,以便在TensorFlow中进行部署和推理。
355 0
|
机器学习/深度学习 存储 算法框架/工具
【深度学习】猫狗识别TensorFlow2实验报告
本文介绍了使用TensorFlow 2进行猫狗识别的实验报告,包括实验目的、采用卷积神经网络(CNN)进行训练的过程,以及如何使用交叉熵作为损失函数来识别猫狗图像数据集。
426 1

热门文章

最新文章