【Python机器学习】实验05 机器学习应用实践-手动调参1

简介: 【Python机器学习】实验05 机器学习应用实践-手动调参1

机器学习应用实践

上一次练习中,我们采用逻辑回归并且应用到一个分类任务。

但是,我们用训练数据训练了模型,然后又用训练数据来测试模型,是否客观?接下来,我们仅对实验1的数据划分进行修改

需要改的地方为:下面红色部分给出了具体的修改。

1 训练数据数量将会变少

2 评估模型时要采用测试集

1.1 准备数据

本实验的数据包含两个变量(评分1和评分2,可以看作是特征),某大学的管理者,想通过申请学生两次测试的评分,来决定他们是否被录取。因此,构建一个可以基于两次测试评分来评估录取可能性的分类模型。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#利用pandas显示数据
path = 'ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam1', 'Exam2', 'Admitted'])
data.head()


Exam1 Exam2 Admitted
0 34.623660 78.024693 0
1 30.286711 43.894998 0
2 35.847409 72.902198 0
3 60.182599 86.308552 1
4 79.032736 75.344376 1
positive=data[data["Admitted"].isin([1])]
negative=data[data["Admitted"].isin([0])]
#准备训练数据
col_num=data.shape[1]
X=data.iloc[:,:col_num-1]
y=data.iloc[:,col_num-1]
X.insert(0,"ones",1)
X.shape
(100, 3)
X=X.values
X.shape
(100, 3)
y=y.values
y.shape
(100,)

此处进行的调整为:要所有数据进行拆分

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =train_test_split(X,y,test_size=0.2,random_state=0)
train_x,test_x,train_y,test_y
(array([[ 1.        , 82.36875376, 40.61825516],
        [ 1.        , 56.2538175 , 39.26147251],
        [ 1.        , 60.18259939, 86.3085521 ],
        [ 1.        , 64.03932042, 78.03168802],
        [ 1.        , 62.22267576, 52.06099195],
        [ 1.        , 62.0730638 , 96.76882412],
        [ 1.        , 61.10666454, 96.51142588],
        [ 1.        , 74.775893  , 89.5298129 ],
        [ 1.        , 67.31925747, 66.58935318],
        [ 1.        , 47.26426911, 88.475865  ],
        [ 1.        , 75.39561147, 85.75993667],
        [ 1.        , 88.91389642, 69.8037889 ],
        [ 1.        , 94.09433113, 77.15910509],
        [ 1.        , 80.27957401, 92.11606081],
        [ 1.        , 99.27252693, 60.999031  ],
        [ 1.        , 93.1143888 , 38.80067034],
        [ 1.        , 70.66150955, 92.92713789],
        [ 1.        , 97.64563396, 68.86157272],
        [ 1.        , 30.05882245, 49.59297387],
        [ 1.        , 58.84095622, 75.85844831],
        [ 1.        , 30.28671077, 43.89499752],
        [ 1.        , 35.28611282, 47.02051395],
        [ 1.        , 94.44336777, 65.56892161],
        [ 1.        , 51.54772027, 46.85629026],
        [ 1.        , 79.03273605, 75.34437644],
        [ 1.        , 53.97105215, 89.20735014],
        [ 1.        , 67.94685548, 46.67857411],
        [ 1.        , 83.90239366, 56.30804622],
        [ 1.        , 74.78925296, 41.57341523],
        [ 1.        , 45.08327748, 56.31637178],
        [ 1.        , 90.44855097, 87.50879176],
        [ 1.        , 71.79646206, 78.45356225],
        [ 1.        , 34.62365962, 78.02469282],
        [ 1.        , 40.23689374, 71.16774802],
        [ 1.        , 61.83020602, 50.25610789],
        [ 1.        , 79.94481794, 74.16311935],
        [ 1.        , 75.01365839, 30.60326323],
        [ 1.        , 54.63510555, 52.21388588],
        [ 1.        , 34.21206098, 44.2095286 ],
        [ 1.        , 90.54671411, 43.39060181],
        [ 1.        , 95.86155507, 38.22527806],
        [ 1.        , 85.40451939, 57.05198398],
        [ 1.        , 40.45755098, 97.53518549],
        [ 1.        , 32.57720017, 95.59854761],
        [ 1.        , 82.22666158, 42.71987854],
        [ 1.        , 68.46852179, 85.5943071 ],
        [ 1.        , 52.10797973, 63.12762377],
        [ 1.        , 80.366756  , 90.9601479 ],
        [ 1.        , 39.53833914, 76.03681085],
        [ 1.        , 52.34800399, 60.76950526],
        [ 1.        , 76.97878373, 47.57596365],
        [ 1.        , 38.7858038 , 64.99568096],
        [ 1.        , 91.5649745 , 88.69629255],
        [ 1.        , 99.31500881, 68.77540947],
        [ 1.        , 55.34001756, 64.93193801],
        [ 1.        , 66.74671857, 60.99139403],
        [ 1.        , 67.37202755, 42.83843832],
        [ 1.        , 89.84580671, 45.35828361],
        [ 1.        , 72.34649423, 96.22759297],
        [ 1.        , 50.4581598 , 75.80985953],
        [ 1.        , 62.27101367, 69.95445795],
        [ 1.        , 64.17698887, 80.90806059],
        [ 1.        , 94.83450672, 45.6943068 ],
        [ 1.        , 77.19303493, 70.4582    ],
        [ 1.        , 34.18364003, 75.23772034],
        [ 1.        , 66.56089447, 41.09209808],
        [ 1.        , 74.24869137, 69.82457123],
        [ 1.        , 82.30705337, 76.4819633 ],
        [ 1.        , 78.63542435, 96.64742717],
        [ 1.        , 32.72283304, 43.30717306],
        [ 1.        , 75.47770201, 90.424539  ],
        [ 1.        , 33.91550011, 98.86943574],
        [ 1.        , 89.67677575, 65.79936593],
        [ 1.        , 57.23870632, 59.51428198],
        [ 1.        , 84.43281996, 43.53339331],
        [ 1.        , 42.26170081, 87.10385094],
        [ 1.        , 49.07256322, 51.88321182],
        [ 1.        , 44.66826172, 66.45008615],
        [ 1.        , 97.77159928, 86.72782233],
        [ 1.        , 51.04775177, 45.82270146]]),
 array([0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0,
        1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,
        0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,
        1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0], dtype=int64),
 array([[ 1.        , 80.19018075, 44.82162893],
        [ 1.        , 42.07545454, 78.844786  ],
        [ 1.        , 35.84740877, 72.90219803],
        [ 1.        , 49.58667722, 59.80895099],
        [ 1.        , 99.8278578 , 72.36925193],
        [ 1.        , 74.49269242, 84.84513685],
        [ 1.        , 69.07014406, 52.74046973],
        [ 1.        , 60.45788574, 73.0949981 ],
        [ 1.        , 50.28649612, 49.80453881],
        [ 1.        , 83.48916274, 48.3802858 ],
        [ 1.        , 34.52451385, 60.39634246],
        [ 1.        , 55.48216114, 35.57070347],
        [ 1.        , 60.45555629, 42.50840944],
        [ 1.        , 69.36458876, 97.71869196],
        [ 1.        , 75.02474557, 46.55401354],
        [ 1.        , 61.37928945, 72.80788731],
        [ 1.        , 50.53478829, 48.85581153],
        [ 1.        , 77.92409145, 68.97235999],
        [ 1.        , 52.04540477, 69.43286012],
        [ 1.        , 76.0987867 , 87.42056972]]),
 array([1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1],
       dtype=int64))
X_train.shape, X_test.shape, y_train.shape, y_test.shape
((80, 3), (20, 3), (80,), (20,))
train_x.shape,train_y.shape
((80, 3), (20, 3))

1.2 定义假设函数

Sigmoid 函数

962c614c80c9d9bd671d6d4d83e27fb.png

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

让我们做一个快速的检查,来确保它可以工作。

w=np.zeros((X.shape[1],1))
#定义假设函数h(x)=1/(1+exp^(-w.Tx))
def h(X,w):
    z=X@w
    h=sigmoid(z)
    return h

1.3 定义代价函数

y_hat=sigmoid(X@w)
X.shape,y.shape,np.log(y_hat).shape
((100, 3), (100,), (100, 1))

现在,我们需要编写代价函数来评估结果。

代价函数:

97273b017d456b1a7f7dae3bc632623.png

#代价函数构造
def cost(X,w,y):
    #当X(m,n+1),y(m,),w(n+1,1)
    y_hat=h(X,w)
    right=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
    cost=-np.sum(right)/X.shape[0]
    return cost
#设置初始的权值
w=np.zeros((X.shape[1],1))
#查看初始的代价
cost(X,w,y)
0.6931471805599453

看起来不错,接下来,我们需要一个函数来计算我们的训练数据、标签和一些参数w的梯度。

1.4 定义梯度下降算法

gradient descent(梯度下降)
  • 这是批量梯度下降(batch gradient descent)

ee7f10a36d475ba364ddf2cec0b0366.png

h(X,w).shape
(100, 1)
def grandient(X,y,iter_num,alpha):
    y=y.reshape((X.shape[0],1))
    w=np.zeros((X.shape[1],1))
    cost_lst=[]
    for i in range(iter_num):
        y_pred=h(X,w)-y
        temp=np.zeros((X.shape[1],1))
        for j in range(X.shape[1]):
            right=np.multiply(y_pred.ravel(),X[:,j])
            gradient=1/(X.shape[0])*(np.sum(right))
            temp[j,0]=w[j,0]-alpha*gradient
        w=temp
        cost_lst.append(cost(X,w,y.ravel()))
    return w,cost_lst

此处进行的调整为:采用train_x, train_y进行训练

train_x.shape,train_y.shape
((80, 3), (20, 3))
iter_num,alpha=100000,0.001
w,cost_lst=grandient(X_train, y_train,iter_num,alpha)
cost_lst[iter_num-1]
0.38273008292061245
plt.plot(range(iter_num),cost_lst,"b-o")
[<matplotlib.lines.Line2D at 0x1d0f1417d30>]

Xw—X(m,n) w (n,1)

w
array([[-4.86722837],
       [ 0.04073083],
       [ 0.04257751]])

1.5 绘制决策边界

高维数据的决策边界无法可视化

1.6 计算准确率

此处进行的调整为:采用X_test和y_test来测试进行训练

如何用我们所学的参数w来为数据集X输出预测,来给我们的分类器的训练精度打分。

逻辑回归模型的假设函数:

61f646969f51b128844af3df0043177.png

#在训练集上的准确率
y_train_true=np.array([1 if item>0.5 else 0 for item in h(X_train,w).ravel()])
y_train_true
array([1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
       1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1,
       1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,
       1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0])
#训练集上的误差
np.sum(y_train_true==y_train)/X_train.shape[0]
0.9125
#在测试集上的准确率
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
array([1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1])
y_test


array([1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1],
      dtype=int64)
np.sum(y_p_true==y_test)/X_test.shape[0]
0.95

1.7 试试用Sklearn来解决

此处进行的调整为:采用X_train和y_train进行训练

from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X_train,y_train)

LogisticRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

LogisticRegression

LogisticRegression()

#在训练集上的准确率为
clf.score(X_train,y_train)
0.9125

此处进行的调整为:采用X_test和y_test进行训练

#在测试集上却只有0.8
clf.score(X_test,y_test)
0.8


目录
相关文章
|
3月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
2月前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
74 12
|
1月前
|
人工智能 容灾 Serverless
AI推理新纪元,PAI全球化模型推理服务的创新与实践
本次分享主题为“AI推理新纪元,PAI全球化模型推理服务的创新与实践”,由阿里云高级产品经理李林杨主讲。内容涵盖生成式AI时代推理服务的变化与挑战、play IM核心引擎的优势及ES专属网关的应用。通过LM智能路由、多模态异步生成等技术,PAI平台实现了30%以上的成本降低和显著性能提升,确保全球客户的业务稳定运行并支持异地容灾,目前已覆盖16个地域,拥有10万张显卡的推理集群。
|
3月前
|
设计模式 开发者 Python
Python编程中的设计模式应用与实践感悟####
本文作为一篇技术性文章,旨在深入探讨Python编程中设计模式的应用价值与实践心得。在快速迭代的软件开发领域,设计模式如同导航灯塔,指引开发者构建高效、可维护的软件架构。本文将通过具体案例,展现设计模式如何在实际项目中解决复杂问题,提升代码质量,并分享个人在实践过程中的体会与感悟。 ####
|
2月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
122 4
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
探索机器学习:从理论到实践
在这篇文章中,我们将深入探讨机器学习的世界。我们将首先了解机器学习的基本概念和原理,然后通过一个简单的代码示例,展示如何实现一个基本的线性回归模型。无论你是初学者还是有经验的开发者,这篇文章都将帮助你更好地理解和应用机器学习。
|
3月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
69 0
|
3月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
107 0
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
Python在数据科学中的应用:从数据处理到模型训练
Python在数据科学中的应用:从数据处理到模型训练

推荐镜像

更多