【Python机器学习】实验05 机器学习应用实践-手动调参1

简介: 【Python机器学习】实验05 机器学习应用实践-手动调参1

机器学习应用实践

上一次练习中,我们采用逻辑回归并且应用到一个分类任务。

但是,我们用训练数据训练了模型,然后又用训练数据来测试模型,是否客观?接下来,我们仅对实验1的数据划分进行修改

需要改的地方为:下面红色部分给出了具体的修改。

1 训练数据数量将会变少

2 评估模型时要采用测试集

1.1 准备数据

本实验的数据包含两个变量(评分1和评分2,可以看作是特征),某大学的管理者,想通过申请学生两次测试的评分,来决定他们是否被录取。因此,构建一个可以基于两次测试评分来评估录取可能性的分类模型。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#利用pandas显示数据
path = 'ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam1', 'Exam2', 'Admitted'])
data.head()


Exam1 Exam2 Admitted
0 34.623660 78.024693 0
1 30.286711 43.894998 0
2 35.847409 72.902198 0
3 60.182599 86.308552 1
4 79.032736 75.344376 1
positive=data[data["Admitted"].isin([1])]
negative=data[data["Admitted"].isin([0])]
#准备训练数据
col_num=data.shape[1]
X=data.iloc[:,:col_num-1]
y=data.iloc[:,col_num-1]
X.insert(0,"ones",1)
X.shape
(100, 3)
X=X.values
X.shape
(100, 3)
y=y.values
y.shape
(100,)

此处进行的调整为:要所有数据进行拆分

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =train_test_split(X,y,test_size=0.2,random_state=0)
train_x,test_x,train_y,test_y
(array([[ 1.        , 82.36875376, 40.61825516],
        [ 1.        , 56.2538175 , 39.26147251],
        [ 1.        , 60.18259939, 86.3085521 ],
        [ 1.        , 64.03932042, 78.03168802],
        [ 1.        , 62.22267576, 52.06099195],
        [ 1.        , 62.0730638 , 96.76882412],
        [ 1.        , 61.10666454, 96.51142588],
        [ 1.        , 74.775893  , 89.5298129 ],
        [ 1.        , 67.31925747, 66.58935318],
        [ 1.        , 47.26426911, 88.475865  ],
        [ 1.        , 75.39561147, 85.75993667],
        [ 1.        , 88.91389642, 69.8037889 ],
        [ 1.        , 94.09433113, 77.15910509],
        [ 1.        , 80.27957401, 92.11606081],
        [ 1.        , 99.27252693, 60.999031  ],
        [ 1.        , 93.1143888 , 38.80067034],
        [ 1.        , 70.66150955, 92.92713789],
        [ 1.        , 97.64563396, 68.86157272],
        [ 1.        , 30.05882245, 49.59297387],
        [ 1.        , 58.84095622, 75.85844831],
        [ 1.        , 30.28671077, 43.89499752],
        [ 1.        , 35.28611282, 47.02051395],
        [ 1.        , 94.44336777, 65.56892161],
        [ 1.        , 51.54772027, 46.85629026],
        [ 1.        , 79.03273605, 75.34437644],
        [ 1.        , 53.97105215, 89.20735014],
        [ 1.        , 67.94685548, 46.67857411],
        [ 1.        , 83.90239366, 56.30804622],
        [ 1.        , 74.78925296, 41.57341523],
        [ 1.        , 45.08327748, 56.31637178],
        [ 1.        , 90.44855097, 87.50879176],
        [ 1.        , 71.79646206, 78.45356225],
        [ 1.        , 34.62365962, 78.02469282],
        [ 1.        , 40.23689374, 71.16774802],
        [ 1.        , 61.83020602, 50.25610789],
        [ 1.        , 79.94481794, 74.16311935],
        [ 1.        , 75.01365839, 30.60326323],
        [ 1.        , 54.63510555, 52.21388588],
        [ 1.        , 34.21206098, 44.2095286 ],
        [ 1.        , 90.54671411, 43.39060181],
        [ 1.        , 95.86155507, 38.22527806],
        [ 1.        , 85.40451939, 57.05198398],
        [ 1.        , 40.45755098, 97.53518549],
        [ 1.        , 32.57720017, 95.59854761],
        [ 1.        , 82.22666158, 42.71987854],
        [ 1.        , 68.46852179, 85.5943071 ],
        [ 1.        , 52.10797973, 63.12762377],
        [ 1.        , 80.366756  , 90.9601479 ],
        [ 1.        , 39.53833914, 76.03681085],
        [ 1.        , 52.34800399, 60.76950526],
        [ 1.        , 76.97878373, 47.57596365],
        [ 1.        , 38.7858038 , 64.99568096],
        [ 1.        , 91.5649745 , 88.69629255],
        [ 1.        , 99.31500881, 68.77540947],
        [ 1.        , 55.34001756, 64.93193801],
        [ 1.        , 66.74671857, 60.99139403],
        [ 1.        , 67.37202755, 42.83843832],
        [ 1.        , 89.84580671, 45.35828361],
        [ 1.        , 72.34649423, 96.22759297],
        [ 1.        , 50.4581598 , 75.80985953],
        [ 1.        , 62.27101367, 69.95445795],
        [ 1.        , 64.17698887, 80.90806059],
        [ 1.        , 94.83450672, 45.6943068 ],
        [ 1.        , 77.19303493, 70.4582    ],
        [ 1.        , 34.18364003, 75.23772034],
        [ 1.        , 66.56089447, 41.09209808],
        [ 1.        , 74.24869137, 69.82457123],
        [ 1.        , 82.30705337, 76.4819633 ],
        [ 1.        , 78.63542435, 96.64742717],
        [ 1.        , 32.72283304, 43.30717306],
        [ 1.        , 75.47770201, 90.424539  ],
        [ 1.        , 33.91550011, 98.86943574],
        [ 1.        , 89.67677575, 65.79936593],
        [ 1.        , 57.23870632, 59.51428198],
        [ 1.        , 84.43281996, 43.53339331],
        [ 1.        , 42.26170081, 87.10385094],
        [ 1.        , 49.07256322, 51.88321182],
        [ 1.        , 44.66826172, 66.45008615],
        [ 1.        , 97.77159928, 86.72782233],
        [ 1.        , 51.04775177, 45.82270146]]),
 array([0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0,
        1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,
        0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,
        1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0], dtype=int64),
 array([[ 1.        , 80.19018075, 44.82162893],
        [ 1.        , 42.07545454, 78.844786  ],
        [ 1.        , 35.84740877, 72.90219803],
        [ 1.        , 49.58667722, 59.80895099],
        [ 1.        , 99.8278578 , 72.36925193],
        [ 1.        , 74.49269242, 84.84513685],
        [ 1.        , 69.07014406, 52.74046973],
        [ 1.        , 60.45788574, 73.0949981 ],
        [ 1.        , 50.28649612, 49.80453881],
        [ 1.        , 83.48916274, 48.3802858 ],
        [ 1.        , 34.52451385, 60.39634246],
        [ 1.        , 55.48216114, 35.57070347],
        [ 1.        , 60.45555629, 42.50840944],
        [ 1.        , 69.36458876, 97.71869196],
        [ 1.        , 75.02474557, 46.55401354],
        [ 1.        , 61.37928945, 72.80788731],
        [ 1.        , 50.53478829, 48.85581153],
        [ 1.        , 77.92409145, 68.97235999],
        [ 1.        , 52.04540477, 69.43286012],
        [ 1.        , 76.0987867 , 87.42056972]]),
 array([1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1],
       dtype=int64))
X_train.shape, X_test.shape, y_train.shape, y_test.shape
((80, 3), (20, 3), (80,), (20,))
train_x.shape,train_y.shape
((80, 3), (20, 3))

1.2 定义假设函数

Sigmoid 函数

962c614c80c9d9bd671d6d4d83e27fb.png

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

让我们做一个快速的检查,来确保它可以工作。

w=np.zeros((X.shape[1],1))
#定义假设函数h(x)=1/(1+exp^(-w.Tx))
def h(X,w):
    z=X@w
    h=sigmoid(z)
    return h

1.3 定义代价函数

y_hat=sigmoid(X@w)
X.shape,y.shape,np.log(y_hat).shape
((100, 3), (100,), (100, 1))

现在,我们需要编写代价函数来评估结果。

代价函数:

97273b017d456b1a7f7dae3bc632623.png

#代价函数构造
def cost(X,w,y):
    #当X(m,n+1),y(m,),w(n+1,1)
    y_hat=h(X,w)
    right=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
    cost=-np.sum(right)/X.shape[0]
    return cost
#设置初始的权值
w=np.zeros((X.shape[1],1))
#查看初始的代价
cost(X,w,y)
0.6931471805599453

看起来不错,接下来,我们需要一个函数来计算我们的训练数据、标签和一些参数w的梯度。

1.4 定义梯度下降算法

gradient descent(梯度下降)
  • 这是批量梯度下降(batch gradient descent)

ee7f10a36d475ba364ddf2cec0b0366.png

h(X,w).shape
(100, 1)
def grandient(X,y,iter_num,alpha):
    y=y.reshape((X.shape[0],1))
    w=np.zeros((X.shape[1],1))
    cost_lst=[]
    for i in range(iter_num):
        y_pred=h(X,w)-y
        temp=np.zeros((X.shape[1],1))
        for j in range(X.shape[1]):
            right=np.multiply(y_pred.ravel(),X[:,j])
            gradient=1/(X.shape[0])*(np.sum(right))
            temp[j,0]=w[j,0]-alpha*gradient
        w=temp
        cost_lst.append(cost(X,w,y.ravel()))
    return w,cost_lst

此处进行的调整为:采用train_x, train_y进行训练

train_x.shape,train_y.shape
((80, 3), (20, 3))
iter_num,alpha=100000,0.001
w,cost_lst=grandient(X_train, y_train,iter_num,alpha)
cost_lst[iter_num-1]
0.38273008292061245
plt.plot(range(iter_num),cost_lst,"b-o")
[<matplotlib.lines.Line2D at 0x1d0f1417d30>]

Xw—X(m,n) w (n,1)

w
array([[-4.86722837],
       [ 0.04073083],
       [ 0.04257751]])

1.5 绘制决策边界

高维数据的决策边界无法可视化

1.6 计算准确率

此处进行的调整为:采用X_test和y_test来测试进行训练

如何用我们所学的参数w来为数据集X输出预测,来给我们的分类器的训练精度打分。

逻辑回归模型的假设函数:

61f646969f51b128844af3df0043177.png

#在训练集上的准确率
y_train_true=np.array([1 if item>0.5 else 0 for item in h(X_train,w).ravel()])
y_train_true
array([1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
       1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1,
       1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,
       1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0])
#训练集上的误差
np.sum(y_train_true==y_train)/X_train.shape[0]
0.9125
#在测试集上的准确率
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
array([1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1])
y_test


array([1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1],
      dtype=int64)
np.sum(y_p_true==y_test)/X_test.shape[0]
0.95

1.7 试试用Sklearn来解决

此处进行的调整为:采用X_train和y_train进行训练

from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X_train,y_train)

LogisticRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

LogisticRegression

LogisticRegression()

#在训练集上的准确率为
clf.score(X_train,y_train)
0.9125

此处进行的调整为:采用X_test和y_test进行训练

#在测试集上却只有0.8
clf.score(X_test,y_test)
0.8


目录
相关文章
|
5天前
|
Python
深入理解Python装饰器:从入门到实践####
本文旨在通过简明扼要的方式,为读者揭开Python装饰器的神秘面纱,从基本概念、工作原理到实际应用场景进行全面解析。不同于常规的摘要仅概述内容概要,本文将直接以一段精炼代码示例开篇,展示装饰器如何优雅地增强函数功能,激发读者探索兴趣,随后深入探讨其背后的机制与高级用法。 ####
32 11
|
2天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
1天前
|
设计模式 缓存 开发框架
Python中的装饰器:从入门到实践####
本文深入探讨了Python中装饰器的工作原理与应用,通过具体案例展示了如何利用装饰器增强函数功能、提高代码复用性和可读性。读者将学习到装饰器的基本概念、实现方法及其在实际项目开发中的实用技巧。 ####
11 3
|
4天前
|
机器学习/深度学习 数据采集 数据可视化
Python在数据科学中的应用:从入门到实践
本文旨在为读者提供一个Python在数据科学领域应用的全面概览。我们将从Python的基础语法开始,逐步深入到数据处理、分析和可视化的高级技术。文章不仅涵盖了Python中常用的数据科学库,如NumPy、Pandas和Matplotlib,还探讨了机器学习库Scikit-learn的使用。通过实际案例分析,本文将展示如何利用Python进行数据清洗、特征工程、模型训练和结果评估。此外,我们还将探讨Python在大数据处理中的应用,以及如何通过集成学习和深度学习技术来提升数据分析的准确性和效率。
|
1天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
|
2天前
|
机器学习/深度学习 传感器 自动驾驶
探索机器学习在图像识别中的创新应用
本文深入分析了机器学习技术在图像识别领域的最新进展,探讨了深度学习算法如何推动图像处理技术的突破。通过具体案例分析,揭示了机器学习模型在提高图像识别准确率、效率及应用场景拓展方面的潜力。文章旨在为读者提供一个全面的视角,了解当前机器学习在图像识别领域的创新应用和未来发展趋势。
|
3天前
|
数据采集 IDE 测试技术
Python实现自动化办公:从基础到实践###
【10月更文挑战第21天】 本文将探讨如何利用Python编程语言实现自动化办公,从基础概念到实际操作,涵盖常用库、脚本编写技巧及实战案例。通过本文,读者将掌握使用Python提升工作效率的方法,减少重复性劳动,提高工作质量。 ###
14 1
|
5天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
11 2
|
6天前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
24 0
|
2天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
11 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型

热门文章

最新文章