阿里云 EMR Serverless Spark 在微财机器学习场景下的应用

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
EMR Serverless Spark 免费试用,1000 CU*H 有效期3个月
简介: 面对机器学习场景下的训练瓶颈,微财选择基于阿里云 EMR Serverless Spark 建立数据平台。通过 EMR Serverless Spark,微财突破了单机训练使用的数据规模瓶颈,大幅提升了训练效率,解决了存算分离架构下 Shuffle 稳定性和性能困扰,为智能风控等业务提供了强有力的技术支撑。

作者微财技术研发经理 宋鑫

微财介绍

微财是一家创新型的金融科技企业,凭借多年积累的金融科技能力和数据处理优势,为客户提供消费分期等金融信息服务,致力于成为值得信赖的金融机构合作伙伴。旗下拥有好分期等品牌,为高成长用户提供信用分期借款过程中的综合性信息、技术以及辅助服务。

业务挑战

数据资源是金融科技企业的核心价值,微财依托大数据评估用户借款过程中的风险,随着微财业务的快速发展,积累了大量用户数据,大数据集的训练逐渐成为瓶颈,其成熟度对业务的重要性不言而喻。根据性能、成本、安全、易用性、可靠性和扩展性等多维度评估,我们可以发现,要搭建一套成熟、稳定且高效的大数据模型训练平台需要耗费大量人力和时间成本。

选择 Spark 技术栈

在数据平台计算引擎层技术选型上,前期的架构选型我们做了很多的调研,综合各个方面考虑,望选择一个成熟且统一的平台:既能够支持数据处理、数据分析场景,也能够很好地支撑数据科学场景。加上团队成员对 Python 及 Spark 的经验丰富, 且 Spark 拥有比较成熟的机器学习生态,所以,从一开始就将目标锁定到了 Spark 技术栈。

为什么选择阿里云 EMR Serverless Spark

在机器学习场景下需要解决的问题:

  • 一是要突破单机训练使用的数据规模的瓶颈;
  • 二是要提高训练的效率,EMR Serverless Spark 的全托管服务、灵活的弹性扩缩容很好的满足了这两点问题,保证了用户级别的独立资源供给。

通过与阿里云计算平台 EMR 团队进行多方面的技术交流以及实际的概念验证,我们最终选择了阿里云 EMR Serverless Spark。作为 一站式全托管湖仓分析平台,其自研 Fusion 引擎,内置高性能向量化计算和 RSS 能力,统一的数据工程和数据科学等,都是我们决定选择 EMR Serverless Spark 的重要原因。

具体来看,EMR Serverless Spark 提供的核心优势如下:

1. 引擎性能大幅提升:自研 Fusion 引擎,内置高性能向量化计算和 RSS 能力,相对开源版本性能提升 3 倍以上;


2. 完整 Spark 技术栈集成:支持使用 DataFrame、SQL、PySpark 等多种编程方式开发批、流、交互式分析、机器学习等不同类型的任务,并进行调度执行;支持通过 Spark Submit、Livy、Spark Thrift Server 等开源兼容的方式进行任务提交;提供内置 SQL Editor 和 Notebook,提供 ETL 和数据科学一体化开发体验;


3. Serverless 全托管服务:开箱即用,免运维,无需关注底层资源情况,降低运维成本,聚焦分析业务,秒级资源供给,按任务级别弹性扩缩容;


4. 高品质支持以及SLA保障阿里云提供覆盖 EMR Serverless Spark 的技术支持;提供商业化 SLA 保障与7*24小时 EMR Serverless Spark 专家支持服务;


5. 总成本降低:自研 Fusion 性能优势显著;同时基于计算存储分离架构,存储依托阿里云 OSS;能够有效降低集群总体使用成本


“EMR Serverless Spark 让我们有了单独的资源池进行模型训练,避免了资源冲突,同时还解决了我们在存算分离架构下需要处理 Shuffle 稳定性和性能问题的困扰。

——微财产品技术研发负责人”

技术数据平台整体架构

数据采集

在微财数据仓库搭建的初期,我们自主研发了 dw-shell 工具,提供了完善的数据采集能力,并且屏蔽了存储引擎和计算引擎之间的差异。这一工具在我们的上云过程中发挥了至关重要的作用,帮助我们在一个月内完成了所有大数据计算任务的全量迁移。

数据入湖

在数据入湖方面,我们采用了 Apache Paimon 作为数据湖存储框架,并集成了 Apache Spark、Flink 和 Hive 作为计算引擎,构建了一个完整的数据湖生态系统。这一系统已经在实时数据监控和分析等场景中得到了成熟的应用,显著提升了我们的数据处理能力和业务效率。

数据科学

我们将机器学习的训练过程从单机训练迁移到了大数据集群,采用本地 Python 环境 + 云端训练的方式,将训练任务提交到 EMR Serverless Spark,保证了本地开发灵活性的同时,充分利用了集群的计算资源,通过自研的模型开发框架 vulcan-x,使分布式训练代码的编写、超参调优与本地开发无异,大幅降低了分布式训练代码编写的难度,基本消除了数据科学家开发的学习成本。

典型应用场景介绍

智能风控

为了帮助数据科学家无缝将训练任务迁移到 EMR Serverless Spark 执行,我们搭建了风控能力平台 MX FLow,提供以下几方面的能力。

特征挖掘支持

我们在 EMR Serverless Spark 实现了特征挖掘常用的分箱方法,如等频分箱、决策树分箱、卡方分箱等,以及特征评估的相关函数,支持用户使用分布式能力将特征离散化,评估特征的风险区分度。

分布式训练

基于 Spark MLlib 成熟的机器学习生态,我们结合了 Spark MLlib 内置算法、以及相关开源算法,如 SynapseML 提供的 lightgbm 分布式实现,为用户提供与本机训练相同的 API,截至目前累计支持了随机森林、逻辑回归、lightgbm、catboot、xgboost 等算法。

image.png

实际测试中发现,训练耗时基本与数据集的 shape(行数 x 列数) 成正比。在常用的训练 PC 上 400万行的训练集,机器内存已经达到瓶颈,使用 EMR Serverless Spark 默认参数进行分布式训练,训练集 5000 万行时,训练耗时在 20 min 左右。

image.png

自动项目管理

MX Flow 与 vulcan-x 配合使用,形成客户端与服务端的交互模式,用户在本地使用 vulcan-x 编写运行的代码产生的过程或结果数据,自动以数据集服务在服务端组织起来,提供可视化过程数据报告、模型管理等功能。服务端也提供了完整的超参调优功能,兼容开源工具 Optuna,提供调优过程 Dashboard。


image.png image.png image.png

总结与展望

随着微财业务数据量的不断增长,我们将会进一步拓展分布式训练的规模。微财在智能风控场景中已经开始深度学习能力的探索,利用多节点的分布式训练框架,如 Horovod、PyTorch Distributed 等,加速大规模深度学习模型的训练过程。未来也希望能够在 EMR Serverless Spark 上能够使用到 GPU 训练的能力,共同探索分布式训练在深度学习领域的应用方向,提高训练效率和可扩展性。


阿里云 EMR Serverless Spark 版是阿里云开源大数据平台 E-MapReduce 基于 Spark 提供的一款全托管、一站式的数据计算平台。它为用户提供任务开发、调试、发布、调度和运维等全方位的产品化服务,显著简化了大数据计算的工作流程,使用户能更专注于数据分析和价值提炼


EMR Serverless Spark 交流钉钉群:58570004119。

image.png

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
16天前
|
运维 Kubernetes 监控
CI/CD(六)模型训练发布-追数场景
训练的场景比较特殊,在没有自动化之前是人工部署、依赖运维调整机器配置、凭记忆不定时去查看日志和监控确认训练进度,训练完成后再联系运维释放机器,现通过全自助选择训练规格、自动化部署、每日自动提醒、一键结束训练并回收资源
56 17
|
1月前
|
机器学习/深度学习 数据采集 人工智能
MATLAB在机器学习模型训练与性能优化中的应用探讨
本文介绍了如何使用MATLAB进行机器学习模型的训练与优化。MATLAB作为强大的科学计算工具,提供了丰富的函数库和工具箱,简化了数据预处理、模型选择、训练及评估的过程。文章详细讲解了从数据准备到模型优化的各个步骤,并通过代码实例展示了SVM等模型的应用。此外,还探讨了超参数调优、特征选择、模型集成等优化方法,以及深度学习与传统机器学习的结合。最后,介绍了模型部署和并行计算技巧,帮助用户高效构建和优化机器学习模型。
46 1
MATLAB在机器学习模型训练与性能优化中的应用探讨
|
26天前
|
Kubernetes 监控 Serverless
基于阿里云Serverless Kubernetes(ASK)的无服务器架构设计与实践
无服务器架构(Serverless Architecture)在云原生技术中备受关注,开发者只需专注于业务逻辑,无需管理服务器。阿里云Serverless Kubernetes(ASK)是基于Kubernetes的托管服务,提供极致弹性和按需付费能力。本文深入探讨如何使用ASK设计和实现无服务器架构,涵盖事件驱动、自动扩展、无状态设计、监控与日志及成本优化等方面,并通过图片处理服务案例展示具体实践,帮助构建高效可靠的无服务器应用。
|
24天前
|
Cloud Native 安全 Serverless
云原生应用实战:基于阿里云Serverless的API服务开发与部署
随着云计算的发展,Serverless架构日益流行。阿里云函数计算(Function Compute)作为Serverless服务,让开发者无需管理服务器即可运行代码,按需付费,简化开发运维流程。本文从零开始,介绍如何使用阿里云函数计算开发简单的API服务,并探讨其核心优势与最佳实践。通过Python示例,演示创建、部署及优化API的过程,涵盖环境准备、代码实现、性能优化和安全管理等内容,帮助读者快速上手Serverless开发。
|
1月前
|
存储 分布式计算 物联网
美的楼宇科技基于阿里云 EMR Serverless Spark 构建 LakeHouse 湖仓数据平台
美的楼宇科技基于阿里云 EMR Serverless Spark 建设 IoT 数据平台,实现了数据与 AI 技术的有效融合,解决了美的楼宇科技设备数据量庞大且持续增长、数据半结构化、数据价值缺乏深度挖掘的痛点问题。并结合 EMR Serverless StarRocks 搭建了 Lakehouse 平台,最终实现不同场景下整体性能提升50%以上,同时综合成本下降30%。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
探索机器学习在农业中的应用:从作物预测到精准农业
探索机器学习在农业中的应用:从作物预测到精准农业
|
24天前
|
SQL 存储 OLAP
阿里云 EMR Serverless StarRocks3.x,极速统一的湖仓新范式
阿里云 EMR Serverless StarRocks3.x,极速统一的湖仓新范式
|
24天前
|
SQL 分布式计算 Serverless
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
2月前
|
SQL 弹性计算 分布式计算
阿里云 EMR 发布托管弹性伸缩功能,支持自动调整集群大小,最高降本60%
阿里云开源大数据平台 E-MapReduce 重磅推出托管弹性伸缩功能,基于 EMR 托管弹性伸缩功能,您可以指定集群的最小和最大计算限制,EMR 会持续对与集群上运行的工作负载相关的关键指标进行采样,自动调整集群大小,以获得最佳性能和资源利用率。
168 15