对比两阶段提交,三阶段提交做了哪些改进?

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 在分布式系统中,各个节点之间在物理上相互独立,通过网络进行沟通和协调。在关系型数据库中,由于存在事务机制,可以保证每个独立节点上的数据操作满足 ACID。但是,相互独立的节点之间无法准确的知道其他节点中的事务执行情况,所以在分布式的场景下,如果不添加额外的机制,多个节点之间理论上无法达到一致的状态。在分布式事务中,两阶段和三阶段提交是经典的一致性算法,那么两阶段和三阶段提交的具体流程是怎样的,三阶段提交又是如何改进的呢?

Java全能学习+面试指南:https://javaxiaobear.cn

本文我们探讨一下两阶段提交和三阶段提交协议的过程以及应用。

在分布式系统中,各个节点之间在物理上相互独立,通过网络进行沟通和协调。在关系型数据库中,由于存在事务机制,可以保证每个独立节点上的数据操作满足 ACID。但是,相互独立的节点之间无法准确的知道其他节点中的事务执行情况,所以在分布式的场景下,如果不添加额外的机制,多个节点之间理论上无法达到一致的状态。

在分布式事务中,两阶段和三阶段提交是经典的一致性算法,那么两阶段和三阶段提交的具体流程是怎样的,三阶段提交又是如何改进的呢?

协调者统一调度

在分布式事务的定义中,如果想让分布式部署的多台机器中的数据保持一致性,那么就要保证在所有节点的数据写操作,要么全部都执行,要么全部都不执行。但是,一台机器在执行本地事务的时候无法知道其他机器中本地事务的执行结果,节点并不知道本次事务到底应该 Commit 还是 Rollback。

在前面介绍过的几种一致性算法中,都是通过一个 Leader 进程进行协调,在 2PC(两阶段)和 3PC(三阶段)中也是一样的解决办法。二阶段和三阶段提交协议都是引入了一个协调者的组件来统一调度所有分布式节点的执行,让当前节点知道其他节点的任务执行状态,通过通知和表决的方式,决定执行 Commit 还是 Rollback 操作。

二阶段提交协议

二阶段提交算法的成立是基于以下假设的:

  • 在该分布式系统中,存在一个节点作为协调者(Coordinator),其他节点作为参与者(Participants),且节点之间可以进行网络通信;
  • 所有节点都采用预写式日志,日志被写入后被保存在可靠的存储设备上,即使节点损坏也不会导致日志数据的丢失;
  • 所有节点不会永久性损坏,即使损坏后仍然可以恢复。

两阶段提交中的两个阶段,指的是 Commit-request 阶段Commit 阶段,两阶段提交的流程如下:

分1.png

提交请求阶段

在提交请求阶段,协调者将通知事务参与者准备提交事务,然后进入表决过程。在表决过程中,参与者将告知协调者自己的决策:同意(事务参与者本地事务执行成功)或取消(本地事务执行故障),在第一阶段,参与节点并没有进行Commit操作。

提交阶段

在提交阶段,协调者将基于第一个阶段的投票结果进行决策:提交或取消这个事务。这个结果的处理和前面基于半数以上投票的一致性算法不同,必须当且仅当所有的参与者同意提交,协调者才会通知各个参与者提交事务,否则协调者将通知各个参与者取消事务。

参与者在接收到协调者发来的消息后将执行对应的操作,也就是本地 Commit 或者 Rollback。

两阶段提交存在的问题

分2.png

两阶段提交协议有几个明显的问题,下面列举如下。

  • 资源被同步阻塞

在执行过程中,所有参与节点都是事务独占状态,当参与者占有公共资源时,那么第三方节点访问公共资源会被阻塞。

  • 协调者可能出现单点故障

一旦协调者发生故障,参与者会一直阻塞下去。

  • 在 Commit 阶段出现数据不一致

在第二阶段中,假设协调者发出了事务 Commit 的通知,但是由于网络问题该通知仅被一部分参与者所收到并执行 Commit,其余的参与者没有收到通知,一直处于阻塞状态,那么,这段时间就产生了数据的不一致性。

三阶段提交协议

为了解决二阶段协议中的同步阻塞等问题,三阶段提交协议在协调者和参与者中都引入了超时机制,并且把两阶段提交协议的第一个阶段拆分成了两步:询问,然后再锁资源,最后真正提交。

三阶段中的 Three Phase 分别为 CanCommit、PreCommit、DoCommit 阶段。

image (30).png

CanCommit 阶段

3PC 的 CanCommit 阶段其实和 2PC 的准备阶段很像。协调者向参与者发送 Can-Commit 请求,参与者如果可以提交就返回 Yes 响应,否则返回 No 响应。

PreCommit 阶段

协调者根据参与者的反应情况来决定是否可以继续事务的 PreCommit 操作。根据响应情况,有以下两种可能。

A. 假如协调者从所有的参与者获得的反馈都是 Yes 响应,那么就会进行事务的预执行:

  • 发送预提交请求,协调者向参与者发送 PreCommit 请求,并进入 Prepared 阶段;
  • 事务预提交,参与者接收到 PreCommit 请求后,会执行事务操作;
  • 响应反馈,如果参与者成功执行了事务操作,则返回 ACK 响应,同时开始等待最终指令。

B. 假如有任何一个参与者向协调者发送了 No 响应,或者等待超时之后,协调者都没有接到参与者的响应,那么就中断事务:

  • 发送中断请求,协调者向所有参与者发送 abort 请求;
  • 中断事务,参与者收到来自协调者的 abort 请求之后,执行事务的中断。

DoCommit 阶段

该阶段进行真正的事务提交,也可以分为以下两种情况。

A. 执行提交

  • 发送提交请求。协调者接收到参与者发送的 ACK 响应后,那么它将从预提交状态进入到提交状态,并向所有参与者发送 doCommit 请求。
  • 事务提交。参与者接收到 doCommit 请求之后,执行正式的事务提交,并在完成事务提交之后释放所有事务资源。
  • 响应反馈。事务提交完之后,向协调者发送 ACK 响应。
  • 完成事务。协调者接收到所有参与者的 ACK 响应之后,完成事务。

B. 中断事务

协调者没有接收到参与者发送的 ACK 响应,可能是因为接受者发送的不是 ACK 响应,也有可能响应超时了,那么就会执行中断事务。

C.超时提交

参与者如果没有收到协调者的通知,超时之后会执行 Commit 操作。

三阶段提交做了哪些改进

引入超时机制

在 2PC 中,只有协调者拥有超时机制,如果在一定时间内没有收到参与者的消息则默认失败,3PC 同时在协调者和参与者中都引入超时机制。

添加预提交阶段

在 2PC 的准备阶段和提交阶段之间,插入一个准备阶段,使 3PC 拥有 CanCommit、PreCommit、DoCommit 三个阶段,PreCommit 是一个缓冲,保证了在最后提交阶段之前各参与节点的状态是一致的。

三阶段提交协议存在的问题

三阶段提交协议同样存在问题,具体表现为,在阶段三中,如果参与者接收到了 PreCommit 消息后,出现了不能与协调者正常通信的问题,在这种情况下,参与者依然会进行事务的提交,这就出现了数据的不一致性。

两阶段和三阶段提交的应用

两阶段提交是一种比较精简的一致性算法/协议,很多关系型数据库都是采用两阶段提交协议来完成分布式事务处理的,典型的比如 MySQL 的 XA 规范。

在事务处理、数据库和计算机网络中,两阶段提交协议提供了分布式设计中的数据一致性的保障,整个事务的参与者要么一致性全部提交成功,要么全部回滚。MySQL Cluster 内部数据的同步就是用的 2PC 协议。

MySQL 的主从复制

在 MySQL 中,二进制日志是 server 层,主要用来做主从复制即时点恢复时使用的;而事务日志(Redo Log)是 InnoDB 存储引擎层,用来保证事务安全的。

在数据库运行中,需要保证 Binlog 和 Redo Log 的一致性,如果顺序不一致, 则意味着 Master-Slave 可能不一致。

在开启 Binlog 后,如何保证 Binlog 和 InnoDB redo 日志的一致性呢?MySQL 使用的就是二阶段提交,内部会自动将普通事务当做一个 XA 事务(内部分布式事务)来处理:

  • Commit 会被自动的分成 Prepare 和 Commit 两个阶段;
  • Binlog 会被当做事务协调者(Transaction Coordinator),Binlog Event 会被当做协调者日志。

关于 XA 规范的具体实现,会在后面的课时中分享。

总结

两阶段和三阶段提交协议是众多分布式算法的基础,这一课时介绍了两阶段提交和三阶段提交的具体流程,两种协议的区别,以及两阶段提交在 MySQL 主从复制中的应用。

好了,本文就到这里了!如果觉得内容不错的话,希望大家可以帮忙点赞转发一波,这是对我最大的鼓励,感谢🙏🏻

本篇福利资料:「阿里经典资料大放送」https://www.aliyundrive.com/s/VQToCzE7RKe

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
关系型数据库 Serverless 分布式数据库
|
4月前
|
机器学习/深度学习 人工智能 算法
通义WebSailor开源,首个挑战BrowseComp基准的开源网络智能体!
WebSailor网络智能体可以应用复杂场景下的检索任务,对于模糊问题可迅速在不同的网页中进行快速检索并推理验证,从而在海量信息中通过严密的多步推理和交叉验证中最终得出检索答案。
409 0
|
机器学习/深度学习 数据可视化 网络架构
增强深度学习模型的可解释性和泛化能力的方法研究
【8月更文第15天】在深度学习领域,模型的准确率和预测能力是衡量模型好坏的重要指标。然而,随着模型复杂度的增加,它们往往变得越来越难以理解,这限制了模型在某些关键领域的应用,例如医疗诊断、金融风险评估等。本文将探讨如何通过几种方法来增强深度学习模型的可解释性,同时保持或提高模型的泛化能力。
1366 2
|
缓存 NoSQL 数据库
高性能Web服务器架构设计
【8月更文第28天】在当今互联网时代,网站的响应速度直接影响用户体验和业务成功率。因此,构建一个高性能的Web服务器架构至关重要。本文将从硬件配置、软件架构以及网络设置三个方面探讨如何提高Web服务器的性能,并提供一些实际的代码示例。
689 0
|
SQL 数据挖掘 数据库
从管控角度谈慢SQL治理
慢SQL指的是执行效率低、响应时间长的SQL查询,其定义需综合考虑执行时间、业务场景、资源消耗、频率及影响、用户体验等多个维度。产生慢SQL的原因包括硬件问题、无索引或索引失效、锁等待及不当的SQL语句。慢SQL会增加资源占用,影响其他请求响应时间,可能导致系统故障,引发数据不一致问题,并影响用户体验。优化慢SQL需善用工具发现、设置合理告警机制,并进行分级治理与长期追踪。
|
开发框架 Java 关系型数据库
Java哪个框架适合开发API接口?
在快速发展的软件开发领域,API接口连接了不同的系统和服务。Java作为成熟的编程语言,其生态系统中出现了许多API开发框架。Magic-API因其独特优势和强大功能,成为Java开发者优选的API开发框架。本文将从核心优势、实际应用价值及未来展望等方面,深入探讨Magic-API为何值得选择。
462 2
|
监控 固态存储 算法
如何进行硬盘碎片整理?
【10月更文挑战第1天】如何进行硬盘碎片整理?
748 2
|
消息中间件 网络协议 调度
【RabbitMQ三】——RabbitMQ工作队列模式(Work Queues)(上)
【RabbitMQ三】——RabbitMQ工作队列模式(Work Queues)(上)
162 1
|
SQL Ubuntu 关系型数据库
如何在云服务器上创建和管理 MySQL 和 MariaDB 数据库
如何在云服务器上创建和管理 MySQL 和 MariaDB 数据库
228 0
|
监控 Java API
Java一分钟之-JPA事务管理:PROPAGATION_REQUIRED, PROPAGATION_REQUIRES_NEW等
【6月更文挑战第14天】Java企业开发中,事务管理确保数据一致性,Spring事务管理核心概念包括`PROPAGATION_REQUIRED`和`PROPAGATION_REQUIRES_NEW`。前者在无事务时新建,有事务时加入,常用于保证业务方法在事务中执行。后者始终创建新事务,独立于当前事务,适用于需隔离影响的场景。理解其应用场景和易错点,合理配置事务传播行为,能提升应用的健壮性和性能。通过监控和日志优化事务策略是关键。
378 1