如何搭建一个数据分析体系

简介: 如何搭建一个数据分析体系

回顾一下上文的内容:一个企业级数据分析体系的最佳实践应该是这样的:

内部感知系统:及时告知各项内部运营参数;

外部感知系统:及时反馈外部竞争、机会状况;

报警系统:及时发现并报告各项异常,并指明故障点;

导航系统:根据设定的目标,提供可到达的若干方案,根据当前方案和位置,指明下一步行动方向,对目标进行合理预测,实时反馈当前执行情况。

但是企业有大小,业务流程有粗细,产业链有长短,企业所处阶段有不同,如何构架一个符合企业实际情况的数据分析体系呢?

大致可以分为这几步骤:

当你接手公司/部门/小组数据分析工作时,可以按照上图所示的流程,建设一套完整的数据分析体系。

Step1理清业务线:首要的工作是理清公司/部门的业务线,这些内容可以从企业战略地图中获得。不同的业务线的目标不一样,场景不一样,数据量也不一样,使用的人员和技术自然也都不一样。此时需要画出业务流程图。



例如,自营业务线更偏向生产企业,需要做财务分析,涉及各个自营产品的收入、各种费用、利润的分析,还必须有固定资产折旧\管理成本摊销的财务专业知识,不同的方法核算出来的成本和利润会有质的区别,影响最终的决策。

Step2明确内外部客户:其次,根据Step1画出的业务流程图,整理出所需服务的内外部客户,以及他们在各个环节中的数据诉求,并绘制成表格:

Step3规划数据服务:根据Step1、2梳理的业务流程、各客户诉求,结合公司战略导向以及数据部门现有资源,绘制战略执行地图,预设准备建设的数据服务内容。以用户运营为例,其业务目标主要为了解用户总体现状、提升用户总量、提升留存、提升日活、提升付费等,再进一步细化至可以提供的数据服务以及简单梳理数据来源。

如上表所示,各种数据服务的内容对技术的要求不一样,同时根据企业数据量和业务复杂程度,所需要的底层数据技术也不一样。公司各条业务线所需的数据服务梳理完之后,就可以进行技术的选型了。数据少,业务流程简单,比如商品贸易企业,只需要一个强力的数据分析师,协同财务和业务,共同做几个业务分析,固化为excel报表,每月更新报表即可,平时对上月的数据进行专题分析,发现问题及时预警,就足够了。

但如果是电商平台,商业模式复杂,数据量又大,首要考虑的就是能够服务于核心指标,提升效率,然后全局规划,分布实施。技术上满足大数据量选用Hadoop体系,应对业务快速变化则需要建设数据仓库,进行业务和数据的解耦,解放数据分析人员的时间则需要搭建多维分析如Kylin、impala等等。

请注意,这里的紧急和重要程度都是相对而言的。

Step4搭建数据团队:数据部门所需支撑的工作已经整理清楚了,业务方对数据的要求也很清晰,也已经根据公司的情况进行了大致的技术选型,那么需要什么样的人员就非常清楚了,遵循“因事定岗,因岗定人”的原则,我们就可以搭建数据团队的组织结构。组织架构并不一定是大而全的,在创业初期,基本上是老板自己担任了数据分析师的角色,凭着对业务的深刻理解,作出各种决策判断。

但是随着业务的不断扩大,业务线增多,业务流程复杂,业务变化快,数据量大,对数据部门的各种要求也就越来越多,因此数据部门承担的任务会越来越复杂,服务的对象也越来越多,基于降本增效的考虑,就需要不断丰富数据部门的职能,拓展技术能力。

Step5设定制度标准:设立制度、规范和标准,是数据工作的基础,与公司大小,数据量的多少无关。统一全公司口径的是公司指标体系及统计口径标准;对外协作需要数据安全管理制度、数据提取审批流程;对内管理需要报表出具流程、专题分析报告制作标准;技术管理则有M有SQL开发规范、数据仓库设计标准等等。预先设定规则,严格执行流程,时刻监督,惩前毖后,切不可让规则成为一纸空文。

Step6补全技术、完善工具:此时,才正式进入纯技术阶段。按照之前的需求及设定的方案,遵照执行即可。如果你正在开荒,那就必须要小心不要被细节缠住,陷入无尽的任务。哪怕资源再少,都要分兵,一部分应对日常需求,一部分搞建设,快速将各种工作自动化,提升效率,腾出功夫做更有价值的事情。

Step7长期规划、快速迭代:优秀的架构师、管理者,都不能满足于现状,但又不能盲目的追求新技术,应该进行合理的超前。无论是所提供的数据服务,还是新技术的引入,只需满足企业未来1年所用即可。迟于进度,则不能满足内外部业务需要,过度超前,则投入太大,ROI不成正比,2019年诸多数据中台项目失败就是这个原因,与诸君共勉。

相关文章
|
3月前
|
SQL 数据采集 算法
【电商数据分析利器】SQL实战项目大揭秘:手把手教你构建用户行为分析系统,从数据建模到精准营销的全方位指南!
【8月更文挑战第31天】随着电商行业的快速发展,用户行为分析的重要性日益凸显。本实战项目将指导你使用 SQL 构建电商平台用户行为分析系统,涵盖数据建模、采集、处理与分析等环节。文章详细介绍了数据库设计、测试数据插入及多种行为分析方法,如购买频次统计、商品销售排名、用户活跃时间段分析和留存率计算,帮助电商企业深入了解用户行为并优化业务策略。通过这些步骤,你将掌握利用 SQL 进行大数据分析的关键技术。
182 0
|
6月前
|
数据采集 数据可视化 数据挖掘
知识分享-商业数据分析业务全流程
知识分享-商业数据分析业务全流程
105 1
|
数据挖掘
【数据分析】:搭建数据分析业务工作流程
【数据分析】:搭建数据分析业务工作流程
【数据分析】:搭建数据分析业务工作流程
|
数据采集 数据挖掘 大数据
业务数据分析最佳案例!旅游业数据分析!⛵
本文使用『城市酒店和度假酒店的预订信息』,对旅游业的发展现状进行数据分析,包含了完整的数据分析流程:数据读取、数据初览、数据预处理、描述性统计、探索性数据分析、关联分析、相关性分析。
904 2
业务数据分析最佳案例!旅游业数据分析!⛵
|
数据采集 数据挖掘 定位技术
【业务数据分析】——如何搭建数据指标体系
【业务数据分析】——如何搭建数据指标体系
749 0
|
监控 算法 安全
【业务数据分析】——十大常用数据分析方法
【业务数据分析】——十大常用数据分析方法
560 0
|
数据挖掘
分享五个常用的数据分析方法论,让你的数据分析报告更上一层楼~
如果你在做数据分析的时候,发现自己常常不知道从哪些维度去开展分析或者分析出来的报告总感觉逻辑上不连贯,内容上不完整,那么你一定是缺乏一个合适的数据分析方法论来指导你进行数据分析。
812 0
分享五个常用的数据分析方法论,让你的数据分析报告更上一层楼~
|
监控 数据挖掘 BI
数据分析7大能力:梳理数据需求
今天分享数据分析师必备的工作能力——需求梳理。需求梳理很不起眼,甚至很多小伙伴感受不到他的存在。但它结结实实影响到大家的下班时间和绩效。
1218 0
|
SQL 运维 算法
做数据分析,到底要懂多少业务
小伙们经常听到这样一句话:“数据分析要懂业务!”那到底啥玩意才是业务?懂多少才算懂业务?今天跟大家分享一下。
192 0
做数据分析,到底要懂多少业务
|
机器学习/深度学习 SQL 算法
从开发视角看数据分析
导读:数据分析就是要从杂乱无章的数据中将某个或者某些核心指标做提炼、归纳、总结,找到某个规律,但往往得到的结论不足以支撑下一步的动作,劳心劳力最后无果,又要再继续深挖。本文并不是一篇专业的数据分析方法论,而是从研发角度对自己做的一些数据分析进行思考和总结。
从开发视角看数据分析