数据分析 | Numpy实战(三) - 分析各类用户占比

简介: 数据分析 | Numpy实战(三) - 分析各类用户占比

本次复习的知识点如下:

  • numpy的reshape以及shape在实战中的运用
  • matplotlib饼图绘制

分析目标

观察上次的数据,数据中有的数据有会员与非会员两种用户类别。

这次我们主要分析一下两种类别用户在数据中占比。

数据读取与数据清洗

根据流程示意图我们主要遵循下面几个步骤:

图 | 源自网络

在过去两次的文章中已经有关于数据读取和数据分析操作的详细代码讲解,所以不再赘述。

此处代码为:

# 数据读取,数据清洗
def read_clean_data():
    clndata_arr_list = []
    for data_filename in data_filenames:
        file = os.path.join(data_path, data_filename)
        data_arr = np.loadtxt(file, skiprows=1, delimiter=',', dtype=bytes).astype(str)
        cln_arr = np.core.defchararray.replace(data_arr[:, -1], '"', '')
        cln_arr = cln_arr.reshape(-1,1)
        clndata_arr_list.append(cln_arr)
    year_cln_arr = np.concatenate(clndata_arr_list)
    return year_cln_arr

这里需要注意两点:

  • 因为数据较大,我们没有数据文件具体数据量,所以在使用numpy.reshape时我们可以使用numpy.reshape(-1,1)这样numpy可以使用统计后的具体数值替换-1
  • 我们对数据的需求不再是获取时间的平均值,只需获取数据最后一列并使用concatenate方法堆叠到一起以便下一步处理。

数据分析

根据这次的分析目标,我们取出最后一列Member type

在上一步我们已经获取了全部的数值,在本部只需筛选统计出会员与非会员的数值就可以了。

我们可以先看下完成后的这部分代码:

# 数据分析
def mean_data(year_cln_arr):
    member = year_cln_arr[year_cln_arr == 'Member'].shape[0]
    casual = year_cln_arr[year_cln_arr == 'Casual'].shape[0]
    users = [member,casual]
    print(users)
    return users

同样,这里使用numpy.shape获取用户分类的具体数据。

结果展示

生成的饼图:

下面是生成饼图的代码:

# 结果展示
plt.figure()
    plt.pie(users, labels=['Member', 'Casual'], autopct='%.2f%%', shadow=True, explode=(0.05, 0))
    plt.axis('equal')
    plt.tight_layout()
    plt.savefig(os.path.join(output_path, './piechart.png'))
    plt.show()

总结

关于之前文章中numpy的大部分用法在这三篇的实战中都有提及,接下来还剩一篇numpy实战总结全文,之后会进入pandas的复习。

相关文章
|
4月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
559 0
|
5月前
|
数据采集 人工智能 算法
“脏数据不清,分析徒劳”——聊聊数据分析里最容易被忽视的苦差事
“脏数据不清,分析徒劳”——聊聊数据分析里最容易被忽视的苦差事
214 34
|
4月前
|
数据采集 SQL 监控
“你分析个锤子啊,米都没洗净”——数据采集和数据分析的底层逻辑真相
“你分析个锤子啊,米都没洗净”——数据采集和数据分析的底层逻辑真相
121 0
|
9月前
|
SQL JSON 数据可视化
基于 DIFY 的自动化数据分析实战
本文介绍如何使用DIFY搭建数据分析自动化流程,实现从输入需求到查询数据库、LLM分析再到可视化输出的全流程。基于经典的employees数据集和DIFY云端环境,通过LLM-SQL解析、SQL执行、LLM数据分析及ECharts可视化等模块,高效完成数据分析任务。此方案适用于人力资源分析、薪酬管理等数据密集型业务,显著提升效率并降低成本。
13449 16
|
9月前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
1月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
292 0
|
1月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
140 0
下一篇
oss云网关配置