【ELM回归预测】基于极限学习机的数据回归预测附matlab代码

简介: 【ELM回归预测】基于极限学习机的数据回归预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

极限学习机(ELM)是一种基于人工神经网络的机器学习算法,用于数据回归预测。它在许多领域中都有广泛的应用,包括金融、医疗和工业等。ELM的独特之处在于其快速训练速度和良好的泛化能力。

ELM的训练过程非常简单,它只需要两个步骤即可完成。首先,随机生成输入层和隐藏层之间的连接权重。然后,通过最小二乘法将训练数据映射到隐藏层,并计算输出层的权重。由于ELM的隐藏层权重是随机生成的,因此它的训练速度非常快。

ELM的优点之一是其强大的泛化能力。它能够在训练数据之外的未知数据上进行准确的预测。这使得ELM成为许多实际问题中的首选算法。

然而,ELM也有一些限制。由于隐藏层权重是随机生成的,因此它对初始权重的选择非常敏感。不同的初始权重可能会导致不同的预测结果。此外,ELM对于噪声数据也比较敏感,可能会导致预测结果的不准确。

总的来说,ELM是一种强大的数据回归预测算法,具有快速训练速度和良好的泛化能力。然而,我们在使用ELM时需要注意初始权重的选择和噪声数据的处理,以确保预测结果的准确性。希望这篇文章对你了解ELM算法有所帮助。

⛄ 部分代码

function [IW, B, LW, TF, TYPE] = elmtrain(p_train, t_train, N, TF, TYPE)% P   - Input Matrix of Training Set  (R * Q)% T   - Output Matrix of Training Set (S * Q)% N   - Number of Hidden Neurons (default = Q)% TF  - Transfer Function:%       'sig' for Sigmoidal function (default)%       'hardlim' for Hardlim function% TYPE - Regression (0, default) or Classification (1)% Output% IW  - Input Weight Matrix (N * R)% B   - Bias Matrix  (N * 1)% LW  - Layer Weight Matrix (N * S)if size(p_train, 2) ~= size(t_train, 2)    error('ELM:Arguments', 'The columns of P and T must be same.');end%%  转入分类模式if TYPE  == 1    t_train  = ind2vec(t_train);end%%  初始化权重R = size(p_train, 1);Q = size(t_train, 2);IW = rand(N, R) * 2 - 1;B  = rand(N, 1);BiasMatrix = repmat(B, 1, Q);%%  计算输出tempH = IW * p_train + BiasMatrix;%%  选择激活函数switch TF    case 'sig'        H = 1 ./ (1 + exp(-tempH));    case 'hardlim'        H = hardlim(tempH);end%%  伪逆计算权重LW = pinv(H') * t_train';

⛄ 运行结果


⛄ 参考文献

[1] 张建军,张天成,隋宇婷,等.基于极限学习机(ELM)岭回归的DNA微阵列数据填补[J].小型微型计算机系统, 2014, 35(10):6.DOI:10.3969/j.issn.1000-1220.2014.10.030.

[2] 陈恒志,杨建平,卢新春,等.基于极限学习机(ELM)的连铸坯质量预测[J].工程科学学报, 2018.DOI:CNKI:SUN:BJKD.0.2018-07-007.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合





相关文章
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
113 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
144 8
|
2月前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
142 8
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
212 0
|
2月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
|
2月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
109 0
|
2月前
|
机器学习/深度学习 数据采集 测试技术
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
158 8
|
2月前
|
编解码 运维 算法
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
155 12
|
2月前
|
人工智能 数据可视化 网络性能优化
【顶级SCI复现】虚拟电厂的多时间尺度调度:在考虑储能系统容量衰减的同时,整合发电与多用户负荷的灵活性研究(Matlab代码实现)
【顶级SCI复现】虚拟电厂的多时间尺度调度:在考虑储能系统容量衰减的同时,整合发电与多用户负荷的灵活性研究(Matlab代码实现)
106 9

热门文章

最新文章