最邻近规则分类 KNN (K-Nearest Neighbor)算法及python实现

简介: 最邻近规则分类 KNN (K-Nearest Neighbor)算法及python实现

我的微信公众号名称深度学习与先进智能决策

微信公众号ID:MultiAgent1024

公众号介绍:主要研究强化学习、计算机视觉、深度学习、机器学习等相关内容,分享学习过程中的学习笔记和心得!期待您的关注,欢迎一起学习交流进步!

KNN算法是学者Cover和Hart早在1968年提出的算法,最初的最邻近规则分类算法最早也是被用来处理分类的问题,是基于实例的学习(instance-based learning),也叫做懒惰学习(lazy learning),之所以这么说呢,是因为最开始我们并不设计算法的模型,而是基于实例来给他归类。

假设我们有一个电影集,我们有一个任务,来给电影分类。电影有很多类型,如浪漫的,动作片。对于每个电影我们可以把它想象成实例,我们的任务是给他归类,在实例中我们可以提取不同的特征值,在下面的这张图片中我们提取了两个特征值:打斗次数,接吻次数。最终实现对未知电影根据特征值分类。

首先我们如何将电影这个例子表达得更像一个数学模型,我们可以表达地如下图所示:

也就是我们可以把每部电影表达为每个实例点,每个点相当于空间中的多维向量,我们的目的是为了将其归类。

KNN算法祥述

为了判断未知实例的类别,以所有已知类别的实例作为参考,选择参数K,计算未知实例与所有已知实例的距离,选择最近K个已知实例,根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多的类别。举个例子来说呢就是:

假设我们有一个豆子A,我们不知道他是哪一类的,我们根据已知的这三类豆子给他进行分类。我们选择最近的K个豆子,假设K=3,那么我们就看这最近的三个豆子属于哪一类,并根据少数服从多数的投票法则来判断这个豆子A的类别。

细节

K如何选取?我们可以依据训练时候的准确度来选取。

关于距离的衡量方法:

Euclidean Distance(欧几里得距离

其他距离衡量:余弦值(cos),相关度(correlation),曼哈顿距离(Manhanttan distance)

以上面所讲的电影的数据集为例,介绍一下具体的算法工作流程:

1. 算G点到A、B、C、D、E、F,点的距离,程序计算欧几里得距离如下(以A和G点之间的距离为例):

 import math
 def ComputeEuclideanDistance(x1, y1, x2, y2):
     d = math.sqrt(math.pow((x1 - x2), 2) + math.pow((y1- y2), 2))
 return d
 d_ag = ComputeEuclideanDistance(18, 90, 3, 104)
 print(d_ag)

2. 之后的话我们选取三个距离最小的三个临近豆子,看这三个临近豆子属于哪一类,用少数服从多数的原则判别出这个豆子的种类。

KNN的算法对K的选择非常敏感,如下图所示:

算法优点:简单;易于理解;容易实现;通过对K的选择可具备丢噪音数据的健壮性。

算法缺点:需要大量空间存储所有已知实例;算法复杂度高(需要比较所有已知实例与要分类的实例);当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例并不接近目标样本。

对于样本点,其silhouette值定义为:

为样本点与当前所属类别的差异度(dissimilarity),用与所有样本点的平均距离度量。为样本点与其他类别差异度最小值。由此可知,接近1表示样本点更倾向于当前类,接近0表示样本点更在两类之间,接近-1表示样本点更倾向于其他类。


Python实现:

 from sklearn import neighbors
 from sklearn import datasets
 # 调用KNN的分类器
 knn = neighbors.KNeighborsClassifier()
 # 加载数据库
 iris = datasets.load_iris()
 # 打印数据集 包含一个四维的特征值和其对应的标签
 print(iris)
 knn.fit(iris.data, iris.target)
 # 预测[0.1, 0.2, 0.3, 0.4]属于哪一类
 predictedLabel = knn.predict([[0.1, 0.2, 0.3, 0.4]])
 # 打印出预测的标签
 print(predictedLabel)


相关文章
|
1月前
|
算法 搜索推荐 JavaScript
基于python智能推荐算法的全屋定制系统
本研究聚焦基于智能推荐算法的全屋定制平台网站设计,旨在解决消费者在个性化定制中面临的选择难题。通过整合Django、Vue、Python与MySQL等技术,构建集家装设计、材料推荐、家具搭配于一体的一站式智能服务平台,提升用户体验与行业数字化水平。
|
1月前
|
存储 监控 算法
监控电脑屏幕的帧数据检索 Python 语言算法
针对监控电脑屏幕场景,本文提出基于哈希表的帧数据高效检索方案。利用时间戳作键,实现O(1)级查询与去重,结合链式地址法支持多条件检索,并通过Python实现插入、查询、删除操作。测试表明,相较传统列表,检索速度提升80%以上,存储减少15%,具备高实时性与可扩展性,适用于大规模屏幕监控系统。
114 5
|
2月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
178 26
|
2月前
|
机器学习/深度学习 编解码 算法
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
312 4
|
2月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
180 0
|
2月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
214 0
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
190 0
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
143 2
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
195 3
|
1月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
137 8

推荐镜像

更多
下一篇
oss云网关配置