【Java面试八股文宝典之MySQL篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day19

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 【Java面试八股文宝典之MySQL篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day19

 image.png

大家好,我是陶然同学,软件工程大三即将实习。认识我的朋友们知道,我是科班出身,学的还行,但是对面试掌握不够,所以我将用这100多天更新Java面试题🙃🙃。

  不敢苟同,相信大家和我一样,都有一个大厂梦,作为一名资深Java选手,深知面试重要性,接下来我准备用100天时间,基于Java岗面试中的高频面试题,以每日3题的形式,带你过一遍热门面试题及恰如其分的解答。当然,我不会太深入,因为我怕记不住!!

  因此,不足的地方希望各位在评论区补充疑惑、见解以及面试中遇到的奇葩问法,希望这100天能够让我们有质的飞越,一起冲进大厂!!,让我们一起学(juan)起来!!!  

如何防止SQL注入

比如:select * from t_user where username = '' and password '''or 1 =1#

select * from t_user where username = '' or 1=1 # ' and password = ''

采用预处理对象,采用PreparedStatement对象,而不是Statement对象可以解决SQL注入的问题。另外也可以提高执行效率,因为是预编译执行,SQL的执行过程(语法校验—编译——执行)

MyBatis如果解决了SQL注入的问题?采用#

MyBatis的#和$的差异,#可以解决SQL注入,而?号能解决

SQL优化

1 避免使用select *

很多时候,我们写sql语句时,为了方便,喜欢直接使用select *,一次性查出表中所有列的数据。

反例:

select * from user where id=1;

在实际业务场景中,可能我们真正需要使用的只有其中一两列。查了很多数据,但是不用,白白浪费了数据库资源,比如:内存或者cpu。

此外,多查出来的数据,通过网络IO传输的过程中,也会增加数据传输的时间。

还有一个最重要的问题是:select *不会走覆盖索引,会出现大量的回表操作,而从导致查询sql的性能很低。

那么,如何优化呢?

正例:

select name,age from user where id=1;

sql语句查询时,只查需要用到的列,多余的列根本无需查出来。

2 用union all代替union

我们都知道sql语句使用union关键字后,可以获取排重后的数据。

而如果使用union all关键字,可以获取所有数据,包含重复的数据。

反例:

(select * from user where id=1) 
union 
(select * from user where id=2);

排重的过程需要遍历、排序和比较,它更耗时,更消耗cpu资源。

所以如果能用union all的时候,尽量不用union。

正例:

(select * from user where id=1) 
union all
(select * from user where id=2);

除非是有些特殊的场景,比如union all之后,结果集中出现了重复数据,而业务场景中是不允许产生重复数据的,这时可以使用union。

3 小表驱动大表

小表驱动大表,也就是说用小表的数据集驱动大表的数据集。

假如有order和user两张表,其中order表有10000条数据,而user表有100条数据。

这时如果想查一下,所有有效的用户下过的订单列表。

可以使用in关键字实现:

select * from order

where user_id in (select id from user where status=1)

也可以使用exists关键字实现:

select * from order

where exists (select 1 from user where order.user_id = user.id and status=1)

前面提到的这种业务场景,使用in关键字去实现业务需求,更加合适。

为什么呢?

因为如果sql语句中包含了in关键字,则它会优先执行in里面的子查询语句,然后再执行in外面的语句。如果in里面的数据量很少,作为条件查询速度更快。

而如果sql语句中包含了exists关键字,它优先执行exists左边的语句(即主查询语句)。然后把它作为条件,去跟右边的语句匹配。如果匹配上,则可以查询出数据。如果匹配不上,数据就被过滤掉了。

这个需求中,order表有10000条数据,而user表有100条数据。order表是大表,user表是小表。如果order表在左边,则用in关键字性能更好。

总结一下:

  • in 适用于左边大表,右边小表。
  • exists 适用于左边小表,右边大表。

不管是用in,还是exists关键字,其核心思想都是用小表驱动大表。

4 批量操作

如果你有一批数据经过业务处理之后,需要插入数据,该怎么办?

反例:

for(Order order: list){
   orderMapper.insert(order):
}

在循环中逐条插入数据

insert into order(id,code,user_id)

values(123,'001',100);

该操作需要多次请求数据库,才能完成这批数据的插入。

但众所周知,我们在代码中,每次远程请求数据库,是会消耗一定性能的。而如果我们的代码需要请求多次数据库,才能完成本次业务功能,势必会消耗更多的性能。

那么如何优化呢?

正例:

orderMapper.insertBatch(list):

提供一个批量插入数据的方法。

insert into order(id,code,user_id)

values(123,'001',100),(124,'002',100),(125,'003',101);

这样只需要远程请求一次数据库,sql性能会得到提升,数据量越多,提升越大。

但需要注意的是,不建议一次批量操作太多的数据,如果数据太多数据库响应也会很慢。批量操作需要把握一个度,建议每批数据尽量控制在500以内。如果数据多于500,则分多批次处理。

5 多用limit

有时候,我们需要查询某些数据中的第一条,比如:查询某个用户下的第一个订单,想看看他第一次的首单时间。

反例:

select id, create_date 
 from order 
where user_id=123 
order by create_date asc;

根据用户id查询订单,按下单时间排序,先查出该用户所有的订单数据,得到一个订单集合。然后在代码中,获取第一个元素的数据,即首单的数据,就能获取首单时间。

List list = orderMapper.getOrderList();

Order order = list.get(0);

虽说这种做法在功能上没有问题,但它的效率非常不高,需要先查询出所有的数据,有点浪费资源。

那么,如何优化呢?

正例:

select id, create_date 
 from order 
where user_id=123 
order by create_date asc 
limit 1;

使用limit 1,只返回该用户下单时间最小的那一条数据即可。

此外,在删除或者修改数据时,为了防止误操作,导致删除或修改了不相干的数据,也可以在sql语句最后加上limit。

例如:

update order set status=0,edit_time=now(3)

where id>=100 and id<200 limit 100;

这样即使误操作,比如把id搞错了,也不会对太多的数据造成影响。

SQL查找是否"存在",别再count了!

根据某一条件从数据库表中查询 『有』与『没有』,只有两种状态,那为什么在写SQL的时候,还要SELECT count(*) 呢?

无论是刚入道的程序员新星,还是精湛沙场多年的程序员老白,都是一如既往的count

反例:目前多数人的写法

多次REVIEW代码时,发现如现现象:

业务代码中,需要根据一个或多个条件,查询是否存在记录,不关心有多少条记录。普遍的SQL及代码写法如下

#### SQL写法:

SELECT count(*) FROM table WHERE a = 1 AND b = 2

 

#### Java写法:

int nums = xxDao.countXxxxByXxx(params);
if ( nums > 0 ) {
  //当存在时,执行这里的代码
} else {
  //当不存在时,执行这里的代码
}

是不是感觉很OK,没有什么问题

优化方案

推荐写法如下:

#### SQL写法:

SELECT 1 FROM table WHERE a = 1 AND b = 2 LIMIT 1

 

#### Java写法:

Integer exist = xxDao.existXxxxByXxx(params);
if ( exist != NULL ) {
  //当存在时,执行这里的代码
} else {
  //当不存在时,执行这里的代码
}

SQL不再使用count,而是改用LIMIT 1,让数据库查询时遇到一条就返回,不要再继续查找还有多少条了

业务代码中直接判断是否非空即可

总结

根据查询条件查出来的条数越多,性能提升的越明显,在某些情况下,还可以减少联合索引的创建。

6 in中值太多

对于批量查询接口,我们通常会使用in关键字过滤出数据。比如:想通过指定的一些id,批量查询出用户信息。

sql语句如下:

select id,name from category

where id in (1,2,3...100000000);

如果我们不做任何限制,该查询语句一次性可能会查询出非常多的数据,很容易导致接口超时。

这时该怎么办呢?

select id,name from category

where id in (1,2,3...100)

limit 500;

可以在sql中对数据用limit做限制。

不过我们更多的是要在业务代码中加限制,伪代码如下:

public List<Category> getCategory(List<Long> ids) {
    if(CollectionUtils.isEmpty(ids)) {
        return null;
    }
    if(ids.size() > 500) {
        throw new BusinessException("一次最多允许查询500条记录")
            }
    return mapper.getCategoryList(ids);
}

还有一个方案就是:如果ids超过500条记录,可以分批用多线程去查询数据。每批只查500条记录,最后把查询到的数据汇总到一起返回。

不过这只是一个临时方案,不适合于ids实在太多的场景。因为ids太多,即使能快速查出数据,但如果返回的数据量太大了,网络传输也是非常消耗性能的,接口性能始终好不到哪里去。

最左前缀原则

当一个SQL想要利用索引时 就一定要提供该索引对应的字段中最左边的字段 也就是排在最前面的字段 比如针对a b c 三个字段建立了联合索引 那么在写sql时就一定要提供a字段的条件 这样才能用到联合索引 这是由于在建立a b c三个字段的联合索引时 底层B+树是按照往右去比较大小进行排序的 所以如果想要利用B+树快速查找也的符合这个规则

7 增量查询

有时候,我们需要通过远程接口查询数据,然后同步到另外一个数据库。

反例:

select * from user;

如果直接获取所有的数据,然后同步过去。这样虽说非常方便,但是带来了一个非常大的问题,就是如果数据很多的话,查询性能会非常差。

这时该怎么办呢?

正例:

select * from user

where id>#{lastId} and create_time >= #{lastCreateTime}

limit 100;

按id和时间升序,每次只同步一批数据,这一批数据只有100条记录。每次同步完成之后,保存这100条数据中最大的id和时间,给同步下一批数据的时候用。

通过这种增量查询的方式,能够提升单次查询的效率。

8 高效的分页

有时候,列表页在查询数据时,为了避免一次性返回过多的数据影响接口性能,我们一般会对查询接口做分页处理。

在mysql中分页一般用的limit关键字:

select id,name,age

from user limit 10,20;

如果表中数据量少,用limit关键字做分页,没啥问题。但如果表中数据量很多,用它就会出现性能问题。

比如现在分页参数变成了:

select id,name,age

from user limit 1000000,20;

mysql会查到1000020条数据,然后丢弃前面的1000000条,只查后面的20条数据,这个是非常浪费资源的。

那么,这种海量数据该怎么分页呢?

优化sql:

select id,name,age

from user where id > 1000000 limit 20;

先找到上次分页最大的id,然后利用id上的索引查询。不过该方案,要求id是连续的,并且有序的。

还能使用between优化分页。

select id,name,age

from user where id between 1000000 and 1000020;

需要注意的是between要在唯一索引上分页,不然会出现每页大小不一致的问题。

9 用连接查询代替子查询

mysql中如果需要从两张以上的表中查询出数据的话,一般有两种实现方式:子查询 和 连接查询。

子查询的例子如下:

select * from order

where user_id in (select id from user where status=1)

子查询语句可以通过in关键字实现,一个查询语句的条件落在另一个select语句的查询结果中。程序先运行在嵌套在最内层的语句,再运行外层的语句。

子查询语句的优点是简单,结构化,如果涉及的表数量不多的话。

但缺点是mysql执行子查询时,需要创建临时表,查询完毕后,需要再删除这些临时表,有一些额外的性能消耗。

这时可以改成连接查询。具体例子如下:

select o.* from order o

inner join user u on o.user_id = u.id

where u.status=1

10 join的表不宜过多

根据阿里巴巴开发者手册的规定,join表的数量不应该超过3个。

反例:

select a.name,b.name.c.name,d.name

from a

inner join b on a.id = b.a_id

inner join c on c.b_id = b.id

inner join d on d.c_id = c.id

inner join e on e.d_id = d.id

inner join f on f.e_id = e.id

inner join g on g.f_id = f.id

如果join太多,mysql在选择索引的时候会非常复杂,很容易选错索引。

并且如果没有命中中,nested loop join 就是分别从两个表读一行数据进行两两对比,复杂度是 n^2。

所以我们应该尽量控制join表的数量。

正例:

select a.name,b.name.c.name,a.d_name

from a

inner join b on a.id = b.a_id

inner join c on c.b_id = b.id

如果实现业务场景中需要查询出另外几张表中的数据,可以在a、b、c表中冗余专门的字段,比如:在表a中冗余d_name字段,保存需要查询出的数据。

不过我之前也见过有些ERP系统,并发量不大,但业务比较复杂,需要join十几张表才能查询出数据。

所以join表的数量要根据系统的实际情况决定,不能一概而论,尽量越少越好。

11 join时要注意

我们在涉及到多张表联合查询的时候,一般会使用join关键字。

而join使用最多的是left join和inner join。

  • left join:求两个表的交集外加左表剩下的数据。
  • inner join:求两个表交集的数据。

使用inner join的示例如下:

select o.id,o.code,u.name

from order o

inner join user u on o.user_id = u.id

where u.status=1;

如果两张表使用inner join关联,mysql会自动选择两张表中的小表,去驱动大表,所以性能上不会有太大的问题。

使用left join的示例如下:

select o.id,o.code,u.name

from order o

left join user u on o.user_id = u.id

where u.status=1;

如果两张表使用left join关联,mysql会默认用left join关键字左边的表,去驱动它右边的表。如果左边的表数据很多时,就会出现性能问题。

要特别注意的是在用left join关联查询时,左边要用小表,右边可以用大表。如果能用inner join的地方,尽量少用left join。

12 控制索引的数量

众所周知,索引能够显著的提升查询sql的性能,但索引数量并非越多越好。

因为表中新增数据时,需要同时为它创建索引,而索引是需要额外的存储空间的,而且还会有一定的性能消耗。

阿里巴巴的开发者手册中规定,单表的索引数量应该尽量控制在5个以内,并且单个索引中的字段数不超过5个。

mysql使用的B+树的结构来保存索引的,在insert、update和delete操作时,需要更新B+树索引。如果索引过多,会消耗很多额外的性能。

那么,问题来了,如果表中的索引太多,超过了5个该怎么办?

这个问题要辩证的看,如果你的系统并发量不高,表中的数据量也不多,其实超过5个也可以,只要不要超过太多就行。

但对于一些高并发的系统,请务必遵守单表索引数量不要超过5的限制。

那么,高并发系统如何优化索引数量?

能够建联合索引,就别建单个索引,可以删除无用的单个索引。

将部分查询功能迁移到其他类型的数据库中,比如:Elastic Seach、HBase等,在业务表中只需要建几个关键索引即可。

13 选择合理的字段类型

char表示固定字符串类型,该类型的字段存储空间的固定的,会浪费存储空间。

alter table order

add column code char(20) NOT NULL;

varchar表示变长字符串类型,该类型的字段存储空间会根据实际数据的长度调整,不会浪费存储空间。

alter table order

add column code varchar(20) NOT NULL;

如果是长度固定的字段,比如用户手机号,一般都是11位的,可以定义成char类型,长度是11字节。

但如果是企业名称字段,假如定义成char类型,就有问题了。

如果长度定义得太长,比如定义成了200字节,而实际企业长度只有50字节,则会浪费150字节的存储空间。

如果长度定义得太短,比如定义成了50字节,但实际企业名称有100字节,就会存储不下,而抛出异常。

所以建议将企业名称改成varchar类型,变长字段存储空间小,可以节省存储空间,而且对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

我们在选择字段类型时,应该遵循这样的原则:

  1. 能用数字类型,就不用字符串,因为字符的处理往往比数字要慢。
  2. 尽可能使用小的类型,比如:用bit存布尔值,用tinyint存枚举值等。
  3. 长度固定的字符串字段,用char类型。
  4. 长度可变的字符串字段,用varchar类型。
  5. 金额字段用decimal,避免精度丢失问题。

还有很多原则,这里就不一一列举了。

14 提升group by的效率

我们有很多业务场景需要使用group by关键字,它主要的功能是去重和分组。

通常它会跟having一起配合使用,表示分组后再根据一定的条件过滤数据。

反例:

select user_id,user_name from order
group by user_id
having user_id <= 200;

这种写法性能不好,它先把所有的订单根据用户id分组之后,再去过滤用户id大于等于200的用户。

分组是一个相对耗时的操作,为什么我们不先缩小数据的范围之后,再分组呢?

正例:

select user_id,user_name from order
where user_id <= 200
group by user_id

使用where条件在分组前,就把多余的数据过滤掉了,这样分组时效率就会更高一些。

其实这是一种思路,不仅限于group by的优化。我们的sql语句在做一些耗时的操作之前,应尽可能缩小数据范围,这样能提升sql整体的性能。

15 索引优化

sql优化当中,有一个非常重要的内容就是:索引优化。

很多时候sql语句,走了索引,和没有走索引,执行效率差别很大。所以索引优化被作为sql优化的首选。

索引优化的第一步是:检查sql语句有没有走索引。

那么,如何查看sql走了索引没?

可以使用explain命令,查看mysql的执行计划。

例如:

explain select * from `order` where code='002';

结果:

最左前缀原则

当一个SQL想要利用索引时 就一定要提供该索引对应的字段中最左边的字段 也就是排在最前面的

字段 比如针对a b c 三个字段建立了联合索引 那么在写sql时就一定要提供a字段的条件 这样才能用

到联合索引 这是由于在建立a b c三个字段的联合索引时 底层B+树是按照往右去比较大小进行排序的 所以如果想要利用B+树快速查找也的符合这个规则


相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
缓存 NoSQL 算法
【Java面试八股文宝典之Redis篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day14
【Java面试八股文宝典之Redis篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day14
316 0
【Java面试八股文宝典之Redis篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day14
|
Java 调度
【Java面试八股文宝典之基础篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day13。
【Java面试八股文宝典之基础篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day13。
87 0
|
SQL 存储 缓存
【Java面试八股文宝典之MySQL篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day22
【Java面试八股文宝典之MySQL篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day22
85 0
【Java面试八股文宝典之MySQL篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day22
|
Java 关系型数据库 MySQL
【Java面试八股文宝典之MySQL篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day20
【Java面试八股文宝典之MySQL篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day20
114 0
【Java面试八股文宝典之MySQL篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day20
|
搜索推荐 关系型数据库 MySQL
【Java面试八股文宝典之MySQL篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day21
【Java面试八股文宝典之MySQL篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day21
87 0
【Java面试八股文宝典之MySQL篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day21
|
存储 SQL NoSQL
【Java面试八股文宝典之MongoDB篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day18
【Java面试八股文宝典之MongoDB篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day18
202 0
【Java面试八股文宝典之MongoDB篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day18
|
XML JSON 前端开发
【Java面试八股文宝典之SpringMVC篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day15
【Java面试八股文宝典之SpringMVC篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day15
99 0
【Java面试八股文宝典之SpringMVC篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day15
|
消息中间件 Java
【Java面试八股文宝典之RabbitMQ篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day16
【Java面试八股文宝典之RabbitMQ篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day16
90 0
【Java面试八股文宝典之RabbitMQ篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day16
|
消息中间件 存储 网络协议
【Java面试八股文宝典之RabbitMQ篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day17
【Java面试八股文宝典之RabbitMQ篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day17
241 0
【Java面试八股文宝典之RabbitMQ篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day17
|
存储 缓存 NoSQL
【Java面试八股文宝典之MySQL篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day23
【Java面试八股文宝典之MySQL篇】备战2023 查缺补漏 你越早准备 越早成功!!!——Day23
113 0

热门文章

最新文章