从零开始的知识图谱生活,构建一个百科知识图谱,完成基于Deepdive的知识抽取、基于ES的简单语义搜索、基于 REfO 的简单KBQA

简介: 从零开始的知识图谱生活,构建一个百科知识图谱,完成基于Deepdive的知识抽取、基于ES的简单语义搜索、基于 REfO 的简单KBQA

从零开始的知识图谱生活,构建一个百科知识图谱,完成基于Deepdive的知识抽取、基于ES的简单语义搜索、基于 REfO 的简单KBQA

个人入门知识图谱过程中的学习笔记,算是半教程类的,指引初学者对知识图谱的各个任务有一个初步的认识。目前暂无新增计划。

1.简介

目标是包含百度百科、互动百科、中文wiki百科的知识,千万级实体数量和亿级别的关系数目。目前已完成百度百科和互动百科部分,其中百度百科词条4,190,390条,互动百科词条4,382,575条。转换为RDF格式得到三元组 128,596,018个。存入 neo4j中得到节点 16,498,370个,关系 56,371,456个,属性 61,967,517个。

项目码源见文末

码源:点击跳转

  • 目录

    • [百度百科与互动百科的知识抽取]

      • 半结构化数据

        • 百度百科爬虫
        • 互动百科爬虫
      • 非结构化数据

        • 微信公众号爬虫
        • 虎嗅网爬虫
    • 非结构化文本的知识抽取

    • 知识存储

      • [D2RQ 的使用]
      • [Jena 的使用]
    • 知识融合

      • [Silk 实战]
    • KBQA

      • [基于 REfO 的简单KBQA]
    • 语义搜索

      • [基于elasticsearch 的简单语义搜索 支持实体检索、实体属性检索和条件检索]

2.获取数据

2.1 半结构化数据

半结构化数据从百度百科和互动百科获取,采用scrapy框架,目前电影领域和通用领域两类。

  • 通用领域百科数据:百度百科词条4,190,390条,互动百科词条3,677,150条。爬取细节请见[从零开始构建知识图谱(七)百科知识图谱构建(一)百度百科的知识抽取]
  • 电影领域: 百度百科包含电影22219部,演员13967人,互动百科包含电影13866部,演员5931 人。项目详细介绍请见[从零开始构建知识图谱(一)半结构化数据的获取]

2.2 非结构化数据

非结构化数据主要来源为微信公众号、虎嗅网新闻和百科内的非结构化文本。

微信公众号爬虫获取公众号发布文章的标题、发布时间、公众号名字、文章内容、文章引用来源,对应 ie/craw/weixin_spider。虎嗅网爬虫 获取虎嗅网新闻的标题、简述、作者、发布时间、新闻内容,对应 ie/craw/news_spider。

3. 非结构化文本的知识抽取

3.1 基于Deepdive的知识抽取

Deepdive是由斯坦福大学InfoLab实验室开发的一个开源知识抽取系统。它通过弱监督学习,从非结构化的文本中抽取结构化的关系数
据 。本次实战基于OpenKG上的[支持中文的deepdive:斯坦福大学的开源知识抽取工具(三元组抽取)],我们基于此,抽取电影领域的演员-电影关系。

详细介绍请见[从零开始构建知识图谱(五)Deepdive抽取演员-电影间关系]

3.2 神经网络关系抽取

利用自己的百科类图谱,构建远程监督数据集,并在OpenNRE上运行。最终生成的数据集包含关系事实18226,无关系(NA)实体对336 693,总计实体对354 919,用到了462个关系(包含NA)。

详细介绍请见[从零开始构建知识图谱(九)百科知识图谱构建(三)神经网络关系抽取的数据集构建与实践]

4.结构化数据到 RDF

结构化数据到RDF由两种主要方式,一个是通过direct mapping,另一个通过R2RML语言这种,基于R2RML语言的方式更为灵活,定制性强。对于R2RML有一些好用的工具,此处我们使用d2rq工具,它基于R2RML-KIT。

详细介绍请见[从零开始构建知识图谱(二)数据库到 RDF及 Jena的访问]

5.知识存储

5.1 将数据存入 Neo4j

图数据库是基于图论实现的一种新型NoSQL数据库。它的数据数据存储结构和数据的查询方式都是以图论为基础的。图论中图的节本元素为节点和边,对应于图数据库中的节点和关系。我们将上面获得的数据存到 Neo4j中。

百科类图谱请见:[从零开始构建知识图谱(八)百科知识图谱构建(二)将数据存进neo4j]

电影领域的请见[从零开始构建知识图谱(六)将数据存进Neo4j]

6.KBQA

6.1 基于 REfO 的简单KBQA

基于浙江大学在openKG上提供的 [基于 REfO 的 KBQA 实现及示例],在自己的知识图谱上实现简单的知识问答系统。

详细介绍请见[从零开始构建知识图谱(三)基于REfO的简单知识问答]

  • 示例

语义搜索

基于elasticsearch 的简单语义搜索

本项目是对浙大的[ 基于elasticsearch的KBQA实现及示例 ]的简化版本,并在自己的数据库上做了实现。

详细介绍请见[从零开始构建知识图谱(四)基于ES的简单语义搜索]

  • 示例

项目码源见文末

码源:点击跳转

更多优质内容请关注公号&知乎:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

相关文章
|
1天前
|
自然语言处理 文字识别 数据处理
多模态文件信息抽取:技术解析与实践评测!
在大数据和人工智能时代,企业和开发者面临的挑战是如何高效处理多模态数据(文本、图像、音频、视频)以快速提取有价值信息。传统方法效率低下,难以满足现代需求。本文将深度评测阿里云的多模态文件信息抽取解决方案,涵盖部署、应用、功能与性能,揭示其在复杂数据处理中的潜力。通过自然语言处理(NLP)、计算机视觉(CV)、语音识别(ASR)等技术,该方案助力企业挖掘多模态数据的价值,提升数据利用效率。
12 4
多模态文件信息抽取:技术解析与实践评测!
|
2月前
|
人工智能 自然语言处理 数据挖掘
RAG 系统高效检索提升秘籍:如何精准选择 BGE 智源、GTE 阿里与 Jina 等的嵌入与精排模型的完美搭配
RAG 系统高效检索提升秘籍:如何精准选择 BGE 智源、GTE 阿里与 Jina 等的嵌入与精排模型的完美搭配
RAG 系统高效检索提升秘籍:如何精准选择 BGE 智源、GTE 阿里与 Jina 等的嵌入与精排模型的完美搭配
|
2月前
|
机器学习/深度学习 人工智能 缓存
最佳实践!使用 GraphRAG + GLM-4 对《红楼梦》全文构建中文增强检索
特别介绍`graphrag-practice-chinese`项目,这是一个针对中文优化的GraphRAG应用实例,通过改进文本切分策略、使用中文提示词及选择更适合中文的模型等手段,显著提升了处理中文内容的能力。项目不仅包括详细的搭建指南,还提供了《红楼梦》全文的索引构建与查询测试示例,非常适合个人学习和研究。
1402 1
|
3月前
|
数据采集 自然语言处理 算法
实战RAG:构建基于检索增强的问答系统
【10月更文挑战第21天】在当今大数据时代,如何高效地从海量信息中获取所需知识,成为一个亟待解决的问题。检索增强的生成模型(Retrieval-Augmented Generation, RAG)应运而生,它结合了检索技术和生成模型的优点,旨在提高生成模型的回答质量和准确性。作为一名热衷于自然语言处理(NLP)领域的开发者,我有幸在多个项目中应用了RAG技术,并取得了不错的成效。本文将从我个人的实际经验出发,详细介绍如何使用RAG技术来构建一个问答系统,希望能够帮助那些已经对RAG有一定了解并希望将其应用于实际项目中的开发者们。
256 1
|
3月前
|
自然语言处理 数据可视化 数据挖掘
闭源与开源嵌入模型比较以及提升语义搜索效果的技术探讨
本文探讨了自然语言处理中嵌入技术的应用,重点在于语义搜索及聚类方法。通过对比不同规模的开源与闭源模型,文章展示了如何利用聚类技术过滤无关结果,提高搜索精度。实验结果显示,较小模型如mxbai在某些任务上表现优异,提示我们在追求高性能的同时不应忽视计算效率与成本效益。最后,文章还介绍了重新排序技术,进一步优化检索结果的相关性。
107 6
闭源与开源嵌入模型比较以及提升语义搜索效果的技术探讨
|
3月前
|
机器学习/深度学习 自然语言处理 算法
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
250 0
|
3月前
|
机器学习/深度学习 存储 自然语言处理
基础与构建:GraphRAG架构解析及其在知识图谱中的应用
【10月更文挑战第11天】随着数据的不断增长和复杂化,传统的信息检索和生成方法面临着越来越多的挑战。特别是在处理结构化和半结构化数据时,如何高效地提取、理解和生成内容变得尤为重要。近年来,一种名为Graph Retrieval-Augmented Generation (GraphRAG) 的新架构被提出,它结合了图神经网络(GNNs)和预训练语言模型,以提高多模态数据的理解和生成能力。本文将深入探讨GraphRAG的基础原理、架构设计,并通过实际代码示例展示其在知识图谱中的应用。
220 0
|
7月前
|
存储 缓存 安全
LLM应用实战:当图谱问答(KBQA)集成大模型(三)
本文主要是针对KBQA方案基于LLM实现存在的问题进行优化,主要涉及到响应时间提升优化以及多轮对话效果优化,提供了具体的优化方案以及相应的prompt。
376 1
|
8月前
|
人工智能 自然语言处理 Cloud Native
向量检索服务在语义检索、知识库搭建、AI多模态搜索等场景中有着广泛的应用
向量检索服务在语义检索、知识库搭建、AI多模态搜索等场景中有着广泛的应用
246 0
|
存储 数据采集 自然语言处理
知识图谱之《海贼王-ONEPICE》领域图谱项目实战(含码源):数据采集、知识存储、知识抽取、知识计算、知识应用、图谱可视化、问答系统(KBQA)等
知识图谱之《海贼王-ONEPICE》领域图谱项目实战(含码源):数据采集、知识存储、知识抽取、知识计算、知识应用、图谱可视化、问答系统(KBQA)等
知识图谱之《海贼王-ONEPICE》领域图谱项目实战(含码源):数据采集、知识存储、知识抽取、知识计算、知识应用、图谱可视化、问答系统(KBQA)等