强化学习从基础到进阶-案例与实践[4.2]:深度Q网络DQN-Cart pole游戏展示

简介: 强化学习从基础到进阶-案例与实践[4.2]:深度Q网络DQN-Cart pole游戏展示

强化学习从基础到进阶-案例与实践[4.2]:深度Q网络DQN-Cart pole游戏展示

  • 强化学习(Reinforcement learning,简称RL)是机器学习中的一个领域,区别与监督学习和无监督学习,强调如何基于环境而行动,以取得最大化的预期利益。
  • 基本操作步骤:智能体agent在环境environment中学习,根据环境的状态state(或观测到的observation),执行动作action,并根据环境的反馈reward(奖励)来指导更好的动作。

比如本项目的Cart pole小游戏中,agent就是动图中的杆子,杆子有向左向右两种action

## 安装依赖
!pip install pygame
!pip install gym
!pip install atari_py
!pip install parl
import gym
import os
import random
import collections

import paddle
import paddle.nn as nn
import numpy as np
import paddle.nn.functional as F

1.经验回放部分

经验回放主要做的事情是:把结果存入经验池,然后经验池中随机取出一条结果进行训练。

这样做有两个好处:

  1. 减少样本之间的关联性
  2. 提高样本的利用率

之所以加入experience replay是因为样本是从游戏中的连续帧获得的,这与简单的reinforcement learning问题相比,样本的关联性大了很多,如果没有experience replay,算法在连续一段时间内基本朝着同一个方向做gradient descent,那么同样的步长下这样直接计算gradient就有可能不收敛。因此experience replay是从一个memory pool中随机选取了一些expeirence,然后再求梯度,从而避免了这个问题。

class ReplayMemory(object):
    def __init__(self, max_size):
        self.buffer = collections.deque(maxlen=max_size)

    # 增加一条经验到经验池中
    def append(self, exp):
        self.buffer.append(exp)

    # 从经验池中选取N条经验出来
    def sample(self, batch_size):
        mini_batch = random.sample(self.buffer, batch_size)
        obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], []

        for experience in mini_batch:
            s, a, r, s_p, done = experience
            obs_batch.append(s)
            action_batch.append(a)
            reward_batch.append(r)
            next_obs_batch.append(s_p)
            done_batch.append(done)

        return np.array(obs_batch).astype('float32'), np.array(action_batch).astype('float32'), np.array(reward_batch).astype('float32'), np.array(next_obs_batch).astype('float32'), np.array(done_batch).astype('float32')

    def __len__(self):
        return len(self.buffer)

2.DQN

DQN算法较普通算法在经验回放和固定Q目标有了较大的改进,主要原因:

  • 经验回放:他充分利用了off-colicp的优势,通过训练把结果(成绩)存入Q表格,然后随机从表格中取出一条结果进行优化。这样子一方面可以:减少样本之间的关联性另一方面:提高样本的利用率 注:训练结果会存进Q表格,当Q表格满了以后,存进来的数据会把最早存进去的数据“挤出去”(弹出)
  • 固定Q目标他解决了算法更新不平稳的问题。 和监督学习做比较,监督学习的最终值要逼近实际结果,这个结果是固定的,但是我们的DQN却不是,他的目标值是经过神经网络以后的一个值,那么这个值是变动的不好拟合,怎么办,DQN团队想到了一个很好的办法,让这个值在一定时间里面保持不变,这样子这个目标就可以确定了,然后目标值更新以后更加接近实际结果,可以更好的进行训练。

3.模型Model

这里的模型可以根据自己的需求选择不同的神经网络组建。

DQN用来定义前向(Forward)网络,可以自由的定制自己的网络结构。

class DQN(nn.Layer):
    def __init__(self, outputs):
        super(DQN, self).__init__()
        self.linear1 = nn.Linear(in_features=4, out_features=128)
        self.linear2 = nn.Linear(in_features=128, out_features=24)
        self.linear3 = nn.Linear(in_features=24, out_features=outputs)

    def forward(self, x):
        x = self.linear1(x)
        x = F.relu(x)
        x = self.linear2(x)
        x = F.relu(x)
        x = self.linear3(x)
        return x

4.智能体Agent的学习函数

这里包括模型探索与模型训练两个部分

Agent负责算法与环境的交互,在交互过程中把生成的数据提供给Algorithm来更新模型(Model),数据的预处理流程也一般定义在这里。

def sample(obs, MODEL):
    global E_GREED
    global ACTION_DIM
    global E_GREED_DECREMENT
    sample = np.random.rand()  # 产生0~1之间的小数
    if sample < E_GREED:
        act = np.random.randint(ACTION_DIM)  # 探索:每个动作都有概率被选择
    else:
        obs = np.expand_dims(obs, axis=0)
        obs = paddle.to_tensor(obs, dtype='float32')
        act = MODEL(obs)
        act = np.argmax(act.numpy())  # 选择最优动作
    E_GREED = max(0.01, E_GREED - E_GREED_DECREMENT)  # 随着训练逐步收敛,探索的程度慢慢降低
    return act


def learn(obs, act, reward, next_obs, terminal, TARGET_MODEL, MODEL):
    global global_step
    # 每隔200个training steps同步一次model和target_model的参数
    if global_step % 50 == 0:
        TARGET_MODEL.load_dict(MODEL.state_dict())
    global_step += 1

    obs = np.array(obs).astype('float32')
    next_obs = np.array(next_obs).astype('float32')
    # act = np.expand_dims(act, -1)
    cost = optimize_model(obs, act, reward, next_obs,
                          terminal, TARGET_MODEL, MODEL)  # 训练一次网络
    return cost


def optimize_model(obs, action, reward, next_obs, terminal, TARGET_MODEL, MODEL):
    """
    使用DQN算法更新self.model的value网络
    """
    # 从target_model中获取 max Q' 的值,用于计算target_Q
    global E_GREED
    global ACTION_DIM
    global E_GREED_DECREMENT
    global GAMMA
    global LEARNING_RATE
    global opt

    opt = paddle.optimizer.Adam(learning_rate=LEARNING_RATE,
                                parameters=MODEL.parameters())  # 优化器(动态图)

    obs = paddle.to_tensor(obs)
    next_obs = paddle.to_tensor(next_obs)

    next_pred_value = TARGET_MODEL(next_obs).detach()
    best_v = paddle.max(next_pred_value, axis=1)
    target = reward + (1.0 - terminal) * GAMMA * best_v.numpy()
    target = paddle.to_tensor(target)
    pred_value = MODEL(obs)  # 获取Q预测值
    # 将action转onehot向量,比如:3 => [0,0,0,1,0]
    action = paddle.to_tensor(action.astype('int32'))
    action_onehot = F.one_hot(action, ACTION_DIM)
    action_onehot = paddle.cast(action_onehot, dtype='float32')
    # 下面一行是逐元素相乘,拿到action对应的 Q(s,a)
    pred_action_value = paddle.sum(paddle.multiply(action_onehot, pred_value), axis=1)
    # 计算 Q(s,a) 与 target_Q的均方差,得到loss
    cost = F.square_error_cost(pred_action_value, target)
    cost = paddle.mean(cost)
    avg_cost = cost
    cost.backward()
    opt.step()
    opt.clear_grad()

    return avg_cost.numpy()

5.模型梯度更新算法

def run_train(env, rpm, TARGET_MODEL, MODEL):
    MODEL.train()
    TARGET_MODEL.train()
    total_reward = 0
    obs = env.reset()

    global global_step
    while True:
        global_step += 1
        # 获取随机动作和执行游戏
        action = sample(obs, MODEL)

        next_obs, reward, isOver, info = env.step(action)

        # 记录数据
        rpm.append((obs, action, reward, next_obs, isOver))

        # 在预热完成之后,每隔LEARN_FREQ步数就训练一次
        if (len(rpm) > MEMORY_WARMUP_SIZE) and (global_step % LEARN_FREQ == 0):
            (batch_obs, batch_action, batch_reward, batch_next_obs, batch_isOver) = rpm.sample(BATCH_SIZE)
            train_loss = learn(batch_obs, batch_action, batch_reward,
                               batch_next_obs, batch_isOver, TARGET_MODEL, MODEL)

        total_reward += reward
        obs = next_obs.astype('float32')

        # 结束游戏
        if isOver:
            break
    return total_reward


def evaluate(model, env, render=False):
    model.eval()
    eval_reward = []
    for i in range(5):
        obs = env.reset()
        episode_reward = 0
        while True:
            obs = np.expand_dims(obs, axis=0)
            obs = paddle.to_tensor(obs, dtype='float32')
            action = model(obs)
            action = np.argmax(action.numpy())
            obs, reward, done, _ = env.step(action)
            episode_reward += reward
            if render:
                env.render()
            if done:
                break
        eval_reward.append(episode_reward)
    return np.mean(eval_reward)

6.训练函数与验证函数

设置超参数

LEARN_FREQ = 5  # 训练频率,不需要每一个step都learn,攒一些新增经验后再learn,提高效率
MEMORY_SIZE = 20000  # replay memory的大小,越大越占用内存
MEMORY_WARMUP_SIZE = 200  # replay_memory 里需要预存一些经验数据,再开启训练
BATCH_SIZE = 32  # 每次给agent learn的数据数量,从replay memory随机里sample一批数据出来
LEARNING_RATE = 0.001  # 学习率大小
GAMMA = 0.99  # reward 的衰减因子,一般取 0.9 到 0.999 不等

E_GREED = 0.1  # 探索初始概率
E_GREED_DECREMENT = 1e-6  # 在训练过程中,降低探索的概率
MAX_EPISODE = 20000  # 训练次数
SAVE_MODEL_PATH = "models/save"  # 保存模型路径
OBS_DIM = None
ACTION_DIM = None
global_step = 0
def main():
    global OBS_DIM
    global ACTION_DIM

    train_step_list = []
    train_reward_list = []
    evaluate_step_list = []
    evaluate_reward_list = []

    # 初始化游戏
    env = gym.make('CartPole-v0')
    # 图像输入形状和动作维度
    action_dim = env.action_space.n
    obs_dim = env.observation_space.shape
    OBS_DIM = obs_dim
    ACTION_DIM = action_dim
    max_score = -int(1e4)

    # 创建存储执行游戏的内存
    rpm = ReplayMemory(MEMORY_SIZE)
    MODEL = DQN(ACTION_DIM)
    TARGET_MODEL = DQN(ACTION_DIM)
    # if os.path.exists(os.path.dirname(SAVE_MODEL_PATH)):
    #     MODEL_DICT = paddle.load(SAVE_MODEL_PATH+'.pdparams')
    #     MODEL.load_dict(MODEL_DICT)  # 加载模型参数
    print("filling memory...")
    while len(rpm) < MEMORY_WARMUP_SIZE:
        run_train(env, rpm, TARGET_MODEL, MODEL)
    print("filling memory done")

    # 开始训练
    episode = 0

    print("start training...")
    # 训练max_episode个回合,test部分不计算入episode数量
    while episode < MAX_EPISODE:
        # train part
        for i in range(0, int(50)):
            # First we need a state
            total_reward = run_train(env, rpm, TARGET_MODEL, MODEL)
            episode += 1

        # print("episode:{}    reward:{}".format(episode, str(total_reward)))

        # test part
        # print("start evaluation...")
        eval_reward = evaluate(TARGET_MODEL, env)
        print('episode:{}    e_greed:{}   test_reward:{}'.format(episode, E_GREED, eval_reward))

        evaluate_step_list.append(episode)
        evaluate_reward_list.append(eval_reward)

        # if eval_reward > max_score or not os.path.exists(os.path.dirname(SAVE_MODEL_PATH)):
        #     max_score = eval_reward
        #     paddle.save(TARGET_MODEL.state_dict(), SAVE_MODEL_PATH+'.pdparams')  # 保存模型


if __name__ == '__main__':
    main()

filling memory...
filling memory done
start training...
episode:50 e_greed:0.0992949999999993 test_reward:9.0
episode:100 e_greed:0.0987909999999988 test_reward:9.8
episode:150 e_greed:0.09827199999999828 test_reward:10.0
episode:200 e_greed:0.09777599999999778 test_reward:8.8
episode:250 e_greed:0.09726999999999728 test_reward:9.0
episode:300 e_greed:0.09676199999999677 test_reward:10.0
episode:350 e_greed:0.0961919999999962 test_reward:14.8

项目链接fork一下即可运行

https://www.heywhale.com/mw/project/649e7d3f70567260f8f11d2b

更多优质内容请关注公号:汀丶人工智能

相关文章
|
1天前
|
人工智能 安全 网络安全
构筑安全防线:云计算中的网络安全策略与实践
【5月更文挑战第17天】 随着云计算的迅猛发展,企业纷纷将数据和应用迁移至云端以提升效率和降低成本。然而,这一转变也带来了前所未有的安全挑战。本文深入探讨了在动态且复杂的云环境中,如何通过一系列创新的网络安全策略和技术手段来确保数据的保密性、完整性和可用性。我们将从云服务模型出发,分析不同服务层次的安全风险,并提出相应的防御机制。接着,文章将聚焦于网络安全的最新趋势,包括使用人工智能进行威胁检测、区块链在数据完整性保护中的应用,以及零信任网络架构的实现。最后,本文将讨论信息安全管理的最佳实践,强调安全意识培训和持续监控的重要性。
|
2天前
|
监控 安全 网络安全
云端防御:云计算环境下的网络安全策略与实践
【5月更文挑战第16天】 随着企业逐渐将数据和服务迁移至云平台,云计算环境的安全性成为了业界关注的焦点。本文深入探讨了在复杂多变的云服务模型中,如何通过创新的网络安全技术和策略来确保信息的完整性、机密性和可用性。文章分析了云计算环境中存在的安全挑战,并提出了相应的解决方案和最佳实践,以帮助组织构建一个既灵活又安全的云基础设施。
|
2天前
|
存储 安全 网络安全
云端守卫:云计算环境下的网络安全策略与实践
【5月更文挑战第16天】 随着企业和个人用户对计算资源的需求不断增长,云计算以其灵活性、可扩展性和成本效益成为了首选解决方案。然而,云服务的广泛采用也带来了新的安全挑战。本文旨在探讨在动态复杂的云计算环境中维护网络安全的策略和最佳实践。通过分析云服务模式(IaaS、PaaS、SaaS)的安全需求,结合最新的加密技术、访问控制机制以及合规性要求,本文提出了一系列创新的网络安全框架和应对措施,以保障数据的安全性和完整性,确保企业在享受云计算带来的便利同时,能够有效防御网络威胁和攻击。
|
2天前
|
监控 安全 算法
网络安全与信息安全:防范之道与实践策略
【5月更文挑战第16天】在数字化时代,网络安全和信息安全已成为个人和企业不可忽视的议题。本文将深入探讨网络安全漏洞的概念、加密技术的重要性以及提升安全意识的必要性,旨在为读者提供一套综合性的网络安全防护策略。通过对常见网络威胁的分析,我们揭示了安全漏洞的本质及其对信息系统的潜在影响。同时,文章还将详细介绍加密技术的基本原理和应用场景,以及如何通过教育和培训提高用户的安全意识,从而构建更为坚固的信息防线。
|
4天前
|
SQL 安全 网络安全
构建安全防线:云计算环境中的网络安全策略与实践
【5月更文挑战第14天】 随着企业逐渐将关键业务流程迁移到云端,云计算服务的安全性成为不容忽视的重要议题。本文深入探讨了在动态且复杂的云环境中实施有效的网络安全措施的策略和技术。通过分析当前云计算模型中的安全挑战,我们提出了一系列创新的安全框架和防御机制,旨在保护数据完整性、确保业务连续性并抵御不断演变的网络威胁。文中不仅涵盖了理论分析和案例研究,还对未来云计算安全技术的发展趋势进行了预测。
|
4天前
|
存储 安全 网络安全
构筑安全之盾:云计算环境下的网络安全策略与实践
【5月更文挑战第11天】 在数字化时代,云计算已成为企业及个人存储、处理和访问数据的重要平台。然而,随着云服务的广泛采用,网络安全威胁也随之增加,给信息保护带来了前所未有的挑战。本文深入探讨了云计算环境中的网络安全策略,包括加密技术、身份验证、访问控制及入侵检测系统等,旨在为读者提供一个关于如何在云服务中维护信息安全的全面视角。同时,文中还分析了当前云安全领域面临的主要挑战,并提出了未来可能的发展方向,以期对构建更为安全、可靠的云计算环境做出贡献。
9 0
|
4天前
|
监控 安全 网络安全
云端防御战线:云计算环境下的网络安全策略与实践
【5月更文挑战第10天】 在数字化转型的浪潮中,云计算作为支撑企业运营的骨干技术之一,其安全性问题备受关注。随着云服务模式的多样化和复杂化,传统的网络安全防护机制已难以完全适用于云环境。本文深入探讨了云计算环境中特有的安全威胁,分析了云计算服务模型(IaaS、PaaS、SaaS)的安全挑战,并提出了相应的安全策略与最佳实践。通过采用多层次防御架构、强化身份认证与访问控制、实施数据加密与隐私保护措施以及建立持续监控与响应机制,旨在为组织在享受云计算带来的便捷性的同时,确保其数据和服务的安全性。
|
4天前
|
机器学习/深度学习 自然语言处理 运维
随机森林填充缺失值、BP神经网络在亚马逊评论、学生成绩分析研究2案例合集2
随机森林填充缺失值、BP神经网络在亚马逊评论、学生成绩分析研究2案例合集
|
4天前
|
机器学习/深度学习 存储 数据采集
随机森林填充缺失值、BP神经网络在亚马逊评论、学生成绩分析研究2案例合集1
随机森林填充缺失值、BP神经网络在亚马逊评论、学生成绩分析研究2案例合集
|
4天前
|
运维 安全 网络协议
即时通讯安全篇(十四):网络端口的安全防护技术实践
网络端口因其数量庞大、端口开放和关闭的影响评估难度大,业务影响程度高、以及异常识别技术复杂度高等特点给网络端口安全防护带来了一定的挑战,如何对端口风险进行有效治理几乎是每个企业安全团队在攻击面管理工作中持续探索的重点项。
22 0

热门文章

最新文章