基于Prometheus和Grafana的监控平台 - 运维告警

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
可观测监控 Prometheus 版,每月50GB免费额度
简介: 基于Prometheus和Grafana的监控平台 - 运维告警

通过前面几篇文章我们搭建好了监控环境并且监控了服务器、数据库、应用,运维人员可以实时了解当前被监控对象的运行情况,但是他们不可能时时坐在电脑边上盯着DashBoard,这就需要一个告警功能,当服务器或应用指标异常时发送告警,通过邮件或者短信的形式告诉运维人员及时处理。

今天我们就来聊聊 基于Prometheus和Grafana的监控平台的异常告警功能,这也是Prometheus系列的最后一篇。


告警方式


Grafana

新版本的Grafana已经提供了告警配置,直接在dashboard监控panel中设置告警即可,但是我用过后发现其实并不灵活,不支持变量,而且好多下载的图表无法使用告警,所以我们不选择使用Grafana告警,而使用Alertmanager。

Alertmanager

相比于Grafana的图形化界面,Alertmanager需要依靠配置文件实现,配置稍显繁琐,但是胜在功能强大灵活。接下来我们就一步一步实现告警通知。


告警类型

Alertmanager告警主要使用以下两种:

  • 邮件接收器 email_config
  • Webhook接收器 webhook_config,会用post形式向配置的url地址发送如下格式的参数。
{
 "version": "2",
 "status": "<resolved|firing>",
 "alerts": [{
         "labels":  < object > ,
         "annotations":  < object > ,
         "startsAt": "<rfc3339>",
         "endsAt": "<rfc3339>"
         }]
 }

这次主要使用邮件的方式进行告警。

实现步骤

  • 下载
    GitHub上下载最新版本的Alertmanager,将其上传解压到服务器上。
    tar -zxvf alertmanager-0.19.0.linux-amd64.tar.gz
  • 配置Alertmanager
vi alertmanager.yml
global:
 resolve_timeout: 5m
 smtp_smarthost: 'mail.163.com:25' #邮箱发送端口
 smtp_from: 'xxx@163.com'
 smtp_auth_username: 'xxx@163.com' #邮箱账号
 smtp_auth_password: 'xxxxxx' #邮箱密码
 smtp_require_tls: false
route:
 group_by: ['alertname']
 group_wait: 10s  # 最初即第一次等待多久时间发送一组警报的通知
 group_interval: 10s # 在发送新警报前的等待时间
 repeat_interval: 1h # 发送重复警报的周期 对于email配置中,此项不可以设置过低,否则将会由于邮件发送太多频繁,被smtp服务器拒绝
 receiver: 'email'
receivers:
- name: 'email'
 email_configs:
 - to: 'xxx@xxx.com'
  • 修改完成后可以使用./amtool check-config alertmanager.yml校验文件是否正确。

  • 校验正确后使用命令启动alertmanager。nohup ./alertmanager &(第一次启动可以不使用nohup静默启动,方便后面查看日志)
    上面的配置中我们只定义了一个路由,那就意味着所有由Prometheus产生的告警在发送到Alertmanager之后都会通过名为email的receiver接收。实际上,对于不同级别的告警,会有不同的处理方式,因此在route中,我们还可以定义更多的子Route。具体配置规则大家可以去百度进一步了解。
  • 配置Prometheus
    在Prometheus安装目录下建立rules文件夹,放置所有的告警规则文件。
alerting:
  alertmanagers:
  - static_configs:
    - targets: ['192.168.249.131:9093']
 rule_files:
   - rules/*.yml
  • 在rules文件夹下建立告警规则文件service_down.yml,当服务器下线时发送邮件。
groups:
- name: ServiceStatus
 rules:
   - alert: ServiceStatusAlert
     expr: up == 0
     for: 2m
     labels:
       team: node
     annotations:
       summary: "Instance {{ $labels.instance }} has bean down"
       description: "{{ $labels.instance }} of job {{ $labels.job }} has been down for more than 2 minutes."
       value: "{{ $value }}"
  • 配置详解
    alert:告警规则的名称。
    expr:基于PromQL表达式告警触发条件,用于计算是否有时间序列满足该条件。
    for:评估等待时间,可选参数。用于表示只有当触发条件持续一段时间后才发送告警。在等待期间新产生告警的状态为PENDING,等待期后为FIRING。
    labels:自定义标签,允许用户指定要附加到告警上的一组附加标签。
    annotations:用于指定一组附加信息,比如用于描述告警详细信息的文字等,annotations的内容在告警产生时会一同作为参数发送到Alertmanager。
    配置完成后重启Prometheus,访问Prometheus查看告警配置。
  • 测试
    关闭node_exporter,过2分钟就可以收到告警邮件啦,截图如下:

  • Alertmanager的告警内容支持使用模板配置,可以使用好看的模板进行渲染,感兴趣的可以试试!

The More

node exporter的一些指标计算语句

  • CPU使用率(单位为percent)
    (avg by (instance) (irate(node_cpu_seconds_total{mode="idle"}[5m])) * 100)
  • 内存已使用(单位为bytes)
    node_memory_MemTotal_bytes - node_memory_MemFree_bytes - node_memory_Cached_bytes - node_memory_Buffers_bytes - node_memory_Slab_bytes
  • 内存使用量(单位为bytes/sec)
    node_memory_MemTotal_bytes - node_memory_MemFree_bytes - node_memory_Cached_bytes - node_memory_Buffers_bytes - node_memory_Slab_bytes
  • 内存使用率(单位为percent)
    ((node_memory_MemTotal_bytes - node_memory_MemFree_bytes - node_memory_Cached_bytes - node_memory_Buffers_bytes - node_memory_Slab_bytes)/node_memory_MemTotal_bytes) * 100
  • server1的内存使用率(单位为percent)
    ((node_memory_MemTotal_bytes{instance="server1"} - node_memory_MemAvailable_bytes{instance="server1"})/node_memory_MemTotal_bytes{instance="server1"}) * 100
  • server2的磁盘使用率(单位为percent) ((node_filesystem_size_bytes{fstype=~"xfs|ext4",instance="server2"} - node_filesystem_free_bytes{fstype=~"xfs|ext4",instance="server2"}) / node_filesystem_size_bytes{fstype=~"xfs|ext4",instance="server2"}) * 100
  • uptime时间(单位为seconds)
    time() - node_boot_time
  • server1的uptime时间(单位为seconds)
    time() - node_boot_time_seconds{instance="server1"}
  • 网络流出量(单位为bytes/sec)
    irate(node_network_transmit_bytes_total{device!~"lo|bond[0-9]|cbr[0-9]|veth.*"}[5m]) > 0
  • server1的网络流出量(单位为bytes/sec)
    irate(node_network_transmit_bytes_total{instance="server1", device!~"lo|bond[0-9]|cbr[0-9]|veth.*"}[5m]) > 0
  • 网络流入量(单位为bytes/sec)
    irate(node_network_receive_bytes_total{device!~"lo|bond[0-9]|cbr[0-9]|veth.*"}[5m]) > 0
  • server1的网络流入量(单位为bytes/sec)
    irate(node_network_receive_bytes_total{instance="server1", device!~"lo|bond[0-9]|cbr[0-9]|veth.*"}[5m]) > 0
  • 磁盘读取速度(单位为bytes/sec) irate(node_disk_read_bytes_total{device=~"sd.*"}[5m])
相关实践学习
通过可观测可视化Grafana版进行数据可视化展示与分析
使用可观测可视化Grafana版进行数据可视化展示与分析。
目录
相关文章
|
Prometheus 监控 Cloud Native
基于k8s+Prometheus+Alertmanager+Grafana构建企业级监控告警系统(下)
基于k8s+Prometheus+Alertmanager+Grafana构建企业级监控告警系统
|
存储 Prometheus 监控
【监控利器Prometheus】——Prometheus+Grafana监控服务器资源
在Prometheus的架构设计中,Prometheus Server并不直接服务监控特定的目标,其主要任务负责数据的收集,存储并且对外提供数据查询支持。因此为了能够能够监控到某些东西,如主机的CPU使用率,我们需要使用到Exporter。Prometheus周期性的从Exporter暴露的HTTP服务地址(通常是/metrics)拉取监控样本数据。
【监控利器Prometheus】——Prometheus+Grafana监控服务器资源
|
2月前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第27天】在智能运维中,Prometheus和Grafana的组合已成为监控和告警体系的事实标准。Prometheus负责数据收集和存储,支持灵活的查询语言PromQL;Grafana提供数据的可视化展示和告警功能。本文介绍如何配置Prometheus监控目标、Grafana数据源及告警规则,帮助运维团队实时监控系统状态,确保稳定性和可靠性。
254 0
|
5月前
|
Prometheus 监控 Cloud Native
基于Prometheus搭建监控平台
基于Prometheus搭建监控平台
|
Prometheus 监控 Kubernetes
Prometheus+Grafana+Alertmanager搭建全方位的监控告警系统-超详细文档(上)
Prometheus+Grafana+Alertmanager搭建全方位的监控告警系统-超详细文档
|
Prometheus Kubernetes 监控
Prometheus+Grafana+Alertmanager搭建全方位的监控告警系统-超详细文档(下)
Prometheus+Grafana+Alertmanager搭建全方位的监控告警系统-超详细文档
|
存储 Prometheus 监控
基于k8s+Prometheus+Alertmanager+Grafana构建企业级监控告警系统(上)
基于k8s+Prometheus+Alertmanager+Grafana构建企业级监控告警系统
|
Prometheus 监控 Cloud Native
Prometheus+Grafana构建监控平台
Prometheus+Grafana构建监控平台
261 0
|
Prometheus 运维 监控
基于Prometheus和Grafana的监控平台 - 运维告警
基于Prometheus和Grafana的监控平台 - 运维告警
256 0
|
Prometheus 监控 Kubernetes
云原生监控:Prometheus Operator,一文带你打通全流程:监控、规则、警报。
云原生监控:Prometheus Operator,一文带你打通全流程:监控、规则、警报。
309 0