基于Matlab实现毫米波雷达静态目标去除算法

简介: 基于Matlab实现毫米波雷达静态目标去除算法

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

文章将介绍三种雷达信号处理常用的静态杂波滤方法的基本原理,分别是零速通道置零法、动目标显示(MTI)以及相量均值相消算法(平均相消算法),并分析了静态杂波的滤除效果,以及三种方法的优缺点和应用场景。数据说明:本文所采用的数据为雷达采集室内人员目标运动的一帧数据,采用的硬件平台为IWR1642,其中数据是通过串口直接输出,由MATLAB接收并处理。相关的操作和下面的链接中的操作是近似的,只是本文仅对静态杂波滤除算法做分析。

⛄ 部分代码

%% 雷达参数

Tx_Number = 2;               %发射天线

Rx_Number = 4;               %接收天线

Range_Number = 128;          %距离点数(每个chirp 128个点)

Doppler_Number = 128;         %多普勒通道数

global Params;

Params.NChirp = Doppler_Number;               %1帧数据的chirp个数

Params.NChan =  Rx_Number;                    %RxAn数,ADC通道数

Params.NSample = Range_Number;                %每个chirp ADC采样数

Params.Fs = 2.5e6;                          %采样频率

Params.c = 3.0e8;                     %光速

Params.startFreq = 77e9;              %起始频率

Params.freqSlope = 60e12;             %chirp的斜率

Params.bandwidth = 3.072e9;           %真实带宽

Params.lambda=Params.c/Params.startFreq;    %雷达信号波长

Params.Tc = 144e-6;                         %chirp周期

global FFT2_mag;


%% 坐标计算

[X,Y] = meshgrid(Params.c*(0:Params.NSample-1)*Params.Fs/2/Params.freqSlope/Params.NSample, ...

   (-Params.NChirp/2:Params.NChirp/2 - 1)*Params.lambda/Params.Tc/Params.NChirp/2);  

     

adc_data =load('angle_15.mat');

Data_dec=(adc_data.prompt_1);  %将16进制转换为10进制


%% 数据读取、拆分、组合

Data_zuhe=zeros(1,Tx_Number*Rx_Number*Doppler_Number*Range_Number*2); %建立计算存储数据的空矩阵

for i=1:1:Tx_Number*Rx_Number*Doppler_Number*Range_Number*2

   

   Data_zuhe(i) = Data_dec((i-1)*2+1)+Data_dec((i-1)*2+2)*256;%两个字节组成一个数,第二个字节乘以256相当于左移8位。

   if(Data_zuhe(i)>32767)

       Data_zuhe(i) = Data_zuhe(i) - 65536;  %限制幅度

   end

end

⛄ 运行结果

⛄ 参考文献

[1] 朱菊蕾. 车载毫米波雷达信号处理算法的研究[D]. 电子科技大学.

[2] 曹洁, 祝菲菲. 基于互相关函数的毫米波雷达测距算法研究[J]. 量子电子学报, 2018, 35(2):9.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。

热门文章

最新文章