LeetCode算法小抄-- 最近公共祖先 和 完全二叉树的节点个数

简介: LeetCode算法小抄-- 最近公共祖先 和 完全二叉树的节点个数

最近公共祖先

Git 是如何找到两条不同分支的最近公共祖先(Lowest Common Ancestor,简称 LCA)的呢?这是一个经典的算法问题

Git 是如何合并两条分支并检测冲突的呢?

rebase 命令为例,比如下图的情况,我站在 dev 分支执行 git rebase master,然后 dev 就会接到 master 分支之上:

fed9d3c87c33468bbba6a16bbc2e8802.png

这个过程中,Git 是这么做的:

首先,找到这两条分支的最近公共祖先LCA,然后从master节点开始,重演LCAdevcommit的修改,如果这些修改和LCAmastercommit有冲突,就会提示你手动解决冲突,最后的结果就是把dev的分支完全接到master上面。


236. 二叉树的最近公共祖先

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

如果一个节点能够在它的左右子树中分别找到pq,则该节点为LCA节点

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        return find(root, p.val, q.val);
    }
    // 在二叉树中寻找 val1 和 val2 的最近公共祖先节点   
    private TreeNode find(TreeNode root, int val1, int val2){
        if(root == null) return null;
        // 前序位置
        if(root.val == val1 || root.val == val2){
            // 如果遇到目标值,直接返回
            return root;
        }
        TreeNode left = find(root.left, val1, val2);
        TreeNode right = find(root.right, val1, val2);
        // 后序位置,已经知道左右子树是否存在目标值
        if(left != null && right != null){
            return root;
        }
        return left != null ? left : right;
    }
}

235. 二叉搜索树的最近公共祖先

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”


例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6 
解释: 节点 2 和节点 8 的最近公共祖先是 6。

但对于 BST 来说,根本不需要老老实实去遍历子树,由于 BST 左小右大的性质,将当前节点的值与val1val2作对比即可判断当前节点是不是LCA

假设val1 < val2,那么val1 <= root.val <= val2则说明当前节点就是LCA;若root.valval1还小,则需要去值更大的右子树寻找LCA;若root.valval2还大,则需要去值更小的左子树寻找LCA

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        // 保证 val1 较小,val2 较大
        int val1 = Math.min(p.val, q.val);
        int val2 = Math.max(p.val, q.val);
        return find(root, val1, val2);
    }
    // 在 BST 中寻找 val1 和 val2 的最近公共祖先节点
    private TreeNode find(TreeNode root, int val1, int val2){
        if(root == null) return null;
        if(root.val > val2){
            // 当前节点太大,去左子树找
            return find(root.left, val1, val2);
        }
        if(root.val < val1){
            // 当前节点太小,去右子树找
            return find(root.right, val1, val2);
        }
        // val1 <= root.val <= val2
        // 则当前节点就是最近公共祖先
        return root;
    }
}

这道题目跟👆一样

剑指 Offer 68 - I. 二叉搜索树的最近公共祖先

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”


例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        // 保证 val1 较小,val2 较大
        int val1 = Math.min(p.val, q.val);
        int val2 = Math.max(p.val, q.val);
        return find(root, val1, val2);
    }
    // 在 BST 中寻找 val1 和 val2 的最近公共祖先节点
    private TreeNode find(TreeNode root, int val1, int val2){
        if(root == null) return null;
        if(root.val > val2){
            // 当前节点太大,去左子树找
            return find(root.left, val1, val2);
        }
        if(root.val < val1){
            // 当前节点太小,去右子树找
            return find(root.right, val1, val2);
        }
        // val1 <= root.val <= val2
        // 则当前节点就是最近公共祖先
        return root;
    }
}

完全二叉树的节点个数

222. 完全二叉树的节点个数

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。

完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

完全二叉树如下图,每一层都是紧凑靠左排列的:


4869c57553c54144b12ff0f322679186.png


满二叉树如下图,是一种特殊的完全二叉树,每层都是是满的,像一个稳定的三角形

e087bde468f6427a9c6683ac67462992.png

一棵完全二叉树的两棵子树,至少有一棵是满二叉树

be4e1f1d63764ae1b490d5995ece8a5a.png


如何求一棵完全二叉树的节点个数呢?

如果是一个普通二叉树,显然只要向下面这样遍历一边即可,时间复杂度 O(N)

public int countNodes(TreeNode root) {
    if (root == null) return 0;
    return 1 + countNodes(root.left) + countNodes(root.right);
}

那如果是一棵二叉树,节点总数就和树的高度呈指数关系

public int countNodes(TreeNode root) {
    int h = 0;
    // 计算树的高度
    while (root != null) {
        root = root.left;
        h++;
    }
    // 节点总数就是 2^h - 1
    return (int)Math.pow(2, h) - 1;
}

完全二叉树比普通二叉树特殊,但又没有满二叉树那么特殊,计算它的节点总数,可以说是普通二叉树和完全二叉树的结合版

public int countNodes(TreeNode root) {
    TreeNode l = root, r = root;
    // 沿最左侧和最右侧分别计算高度
    int hl = 0, hr = 0;
    while (l != null) {
        l = l.left;
        hl++;
    }
    while (r != null) {
        r = r.right;
        hr++;
    }
    // 如果左右侧计算的高度相同,则是一棵满二叉树
    if (hl == hr) {
        return (int)Math.pow(2, hl) - 1;
    }
    // 如果左右侧的高度不同,则按照普通二叉树的逻辑计算
    return 1 + countNodes(root.left) + countNodes(root.right);
}

算法的递归深度就是树的高度 O(logN),每次递归所花费的时间就是 while 循环,需要 O(logN),所以总体的时间复杂度是 O(logN*logN)

–end–

相关文章
|
1月前
|
机器学习/深度学习 运维 算法
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
116 0
|
1月前
|
机器学习/深度学习 并行计算 算法
基于改进的粒子群算法PSO求解电容器布局优化问题HV配电中的功率损耗和成本 IEEE34节点(Matlab代码实现)
基于改进的粒子群算法PSO求解电容器布局优化问题HV配电中的功率损耗和成本 IEEE34节点(Matlab代码实现)
|
1月前
|
并行计算 算法 安全
【ADMM、碳排放】基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究【IEEE6节点、IEEE30节点、IEEE118节点】(Matlab代码实现)
【ADMM、碳排放】基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究【IEEE6节点、IEEE30节点、IEEE118节点】(Matlab代码实现)
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于自适应遗传算法风光场景生成的电动汽车并网优化调度【IEEE33节点】(Matlab代码实现)
基于自适应遗传算法风光场景生成的电动汽车并网优化调度【IEEE33节点】(Matlab代码实现)
|
5月前
|
SQL 分布式计算 DataWorks
使用DataWorks PyODPS节点调用XGBoost算法
本文介绍如何在DataWorks中通过PyODPS3节点调用XGBoost算法完成模型训练与测试,并实现周期离线调度。主要内容包括:1) 使用ODPS SQL构建数据集;2) 创建PyODPS3节点进行数据处理与模型训练;3) 构建支持XGBoost的自定义镜像;4) 测试运行并选择对应镜像。适用于需要集成机器学习算法到大数据工作流的用户。
210 24
|
5月前
|
Go 开发者 索引
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣33 / 81/ 153/154)(Go语言版)
本文深入探讨了LeetCode中四道关于「搜索旋转排序数组」的经典题目,涵盖了无重复和有重复元素的情况。通过二分查找的变形应用,文章详细解析了每道题的解题思路和Go语言实现代码。关键点包括判断有序区间、处理重复元素以及如何缩小搜索范围。文章还总结了各题的异同,并推荐了类似题目,帮助读者全面掌握二分查找在旋转数组中的应用。无论是初学者还是有经验的开发者,都能从中获得实用的解题技巧和代码实现方法。
268 14
|
5月前
|
传感器 算法 数据安全/隐私保护
基于GA遗传优化的三维空间WSN网络最优节点部署算法matlab仿真
本程序基于遗传算法(GA)优化三维空间无线传感网络(WSN)的节点部署,通过MATLAB2022A实现仿真。算法旨在以最少的节点实现最大覆盖度,综合考虑空间覆盖、连通性、能耗管理及成本控制等关键问题。核心思想包括染色体编码节点位置、适应度函数评估性能,并采用网格填充法近似计算覆盖率。该方法可显著提升WSN在三维空间中的部署效率与经济性,为实际应用提供有力支持。
|
6月前
|
Go
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣437 / 236 )(Go语言版)
本文深入探讨二叉树中路径与祖先问题,涵盖两道经典题目:LeetCode 437(路径总和 III)和236(最近公共祖先)。对于路径总和 III,文章分析了双递归暴力解法与前缀和优化方法,后者通过哈希表记录路径和,将时间复杂度从O(n²)降至O(n)。在最近公共祖先问题中,采用后序遍历递归查找,利用“自底向上”的思路确定最近公共祖先节点。文中详细解析代码实现与核心要点,帮助读者掌握深度追踪技巧,理解树结构中路径与节点关系的本质。这类问题在面试中高频出现,掌握其解法意义重大。
134 4
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
204 6
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
320 2

热门文章

最新文章