卷积神经网络(基础篇)

简介: 卷积(convolution)后,C(Channels)变,W(width)和H(Height)可变可不变,取决于是否padding。subsampling(或pooling)后,C不变,W和H变。

说明 0、前一部分叫做Feature Extraction,后一部分叫做classification


       1、每一个卷积核它的通道数量要求和输入通道是一样的。这种卷积核的总数有多少个和你输出通道的数量是一样的。


       2、卷积(convolution)后,C(Channels)变,W(width)和H(Height)可变可不变,取决于是否padding。subsampling(或pooling)后,C不变,W和H变。


       3、卷积层:保留图像的空间信息。


      4、卷积层要求输入输出是四维张量(B,C,W,H),全连接层的输入与输出都是二维张量(B,Input_feature)。


          传送门 PyTorch的nn.Linear()详解


     5、卷积(线性变换),激活函数(非线性变换),池化;这个过程若干次后,view打平,进入全连接层~


20201114144337983.png


20201114144337983.png



20201114144345796.png


1. 卷积操作


import torch
# 定义输入、输出通道
in_channels, out_channels = 5, 10
# 定义图像尺寸
width, height = 100, 100
# 定义卷积核的大小,下式表示大小为3*3的正方形,同时,卷积核的通道数与输入图像的通道数一致,均为5
kernel_size = 3
# 定义一次输入图像的数量
batch_size = 1
input = torch.randn(batch_size,
                    in_channels,
                    width,
                    height)
# out_channels 决定了卷积核的数量, 即一共有10个3*3*5的卷积核
conv_layer = torch.nn.Conv2d(in_channels,
                             out_channels,
                             kernel_size=kernel_size)
output = conv_layer(input)
print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)


输出:


torch.Size([1, 5, 100, 100])
torch.Size([1, 10, 98, 98])
torch.Size([10, 5, 3, 3])


有时,我们希望获得与原图像相同大小的卷积后的图像,这时需要属性padding,默认为0


conv_layer_with_padding = torch.nn.Conv2d(in_channels,
                                          out_channels,
                                          padding=1,
                                          kernel_size = kernel_size)
output_with_padding = conv_layer_with_padding(input)
print(output_with_padding.shape)


输出:


torch.Size([1, 10, 100, 100])


还有时,我们希望再次降低网络的大小,以降低运算量。此时引入卷积核移动步长stride的概念,默认为1


conv_layer_with_stride = torch.nn.Conv2d(in_channels,
                                         out_channels,
                                         stride=2,
                                         kernel_size=kernel_size)
output_with_stride = conv_layer_with_stride(input)
print(output_with_stride.shape)


输出:


torch.Size([1, 10, 49, 49])


2. 下采样


下采样与卷积无本质区别,不同的在于目的。下采样的目的是将数据维度再次减少。


最常用的下采样手段是Max Pooling 最大池化。


input = [
    3,4,6,5,
    2,4,6,8,
    1,6,7,8,
    9,7,4,6,
]
input = torch.Tensor(input).view(1,1,4,4)
maxpooling_layer = torch.nn.MaxPool2d(kernel_size=2)
# 注意,我们将kernel_size设为2,此时stride默认也为2
output = maxpooling_layer(input)
print(output)


输出:


tensor([[[[4., 8.],
          [9., 8.]]]])


3. 卷积神经基础代码


fe20753494214a479321420ff1358d10.png


代码说明:


1、torch.nn.Conv2d(1,10,kernel_size=3,stride=2,bias=False)


1是指输入的Channel,灰色图像是1维的;10是指输出的Channel,也可以说第一个卷积层需要10个卷积核;kernel_size=3,卷积核大小是3x3;stride=2进行卷积运算时的步长,默认为1;bias=False卷积运算是否需要偏置bias,默认为False。padding = 0,卷积操作是否补0。


2、self.fc = torch.nn.Linear(320, 10),这个320获取的方式,可以通过x = x.view(batch_size, -1)


# print(x.shape)可得到(64,320),64指的是batch,320就是指要进行全连接操作时,输入的特征维度。


import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
# prepare dataset
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True,
                               download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False,
                              download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# design model using class
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
    def forward(self, x):
        # flatten data from (n,1,28,28) to (n, 784)
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)  # -1 此处自动算出的是320
        # print("x.shape",x.shape)
        x = self.fc(x)
        return x
model = Net()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# training cycle forward, backward, update
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('accuracy on test set: %d %% ' % (100 * correct / total))
    return correct / total
if __name__ == '__main__':
    epoch_list = []
    acc_list = []
    for epoch in range(10):
        train(epoch)
        acc = test()
        epoch_list.append(epoch)
        acc_list.append(acc)
    plt.plot(epoch_list, acc_list)
    plt.ylabel('accuracy')
    plt.xlabel('epoch')
    plt.show()
目录
相关文章
|
1天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
87 55
|
11天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
77 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
15天前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
37 3
图卷积网络入门:数学基础与架构设计
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
64 7
|
17天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
19 1
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
24天前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
38 1
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)