【大家好,我是爱干饭的猿,本文重点介绍MySQL的三大范式、反范式化和巴斯范式的一些问题。
后续会继续分享MySQL和其他重要知识点总结,如果喜欢这篇文章,点个赞👍,关注一下吧】
上一篇文章:《【MySQL】索引优化与查询优化(重点:索引失效的11种情况)》
目录
🥯1.范 式
1.1范式简介
在关系型数据库中,关于数据表设计的基本原则、规则就称为范式。可以理解为,一张数据表的设计结构需要满足的某种设计标准的级别
。要想设计一个结构合理的关系型数据库,必须满足一定的范式。
1.2范式都包括哪些
目前关系型数据库有六种常见范式,按照范式级别,从低到高分别是:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、巴斯-科德范式(BCNF)、第四范式(4NF)和第五范式(5NF,又称完美范式)。
1.3键和相关属性的概念
这里有两个表:
球员表(player)
:球员编号 | 姓名 | 身份证号 | 年龄 | 球队编号
球队表(team)
:球队编号 | 主教练 | 球队所在地
超键
:对于球员表来说,超键就是包括球员编号或者身份证号的任意组合,比如(球员编号)(球员编号,姓名)(身份证号,年龄)等。候选键
:就是最小的超键,对于球员表来说,候选键就是(球员编号)或者(身份证号)。主键
:我们自己选定,也就是从候选键中选择一个,比如(球员编号)。外键
:球员表中的球队编号。主属性
、非主属性
:在球员表中,主属性是(球员编号)(身份证号),其他的属性(姓名)(年龄)(球队编号)都是非主属性。
1.4第一范式(1st NF)
第一范式主要是确保数据表中每个字段的值必须具有原子性
,也就是说数据表中每个字段的值为不可再次拆分
的最小数据单位。
1.5第二范式(2nd NF)
第二范式要求,在满足第一范式的基础上,还要满足数据表里的每一条数据记录,都是可唯一标识的。而且所有非主键字段,都必须完全依赖主键,不能只依赖主键(联合主键)的一部分。如果知道主键的所有属性的值,就可以检索到任何元组(行)的任何属性的任何值。
举例1:
成绩表 (学号,课程号,成绩)关系中,(学号,课程号)可以决定成绩,但是学号不能决定成绩,课程号也不能决定成绩,所以“(学号,课程号)→成绩”就是 完全依赖关系 。
如果只是部分依赖主键:
1. 数据冗余 :如果一个球员可以参加 m 场比赛,那么球员的姓名和年龄就重复了 m-1 次。一个比赛
也可能会有 n 个球员参加,比赛的时间和地点就重复了 n-1 次。
2. 插入异常 :如果我们想要添加一场新的比赛,但是这时还没有确定参加的球员都有谁,那么就没
法插入。
3. 删除异常 :如果我要删除某个球员编号,如果没有单独保存比赛表的话,就会同时把比赛信息删
除掉。
4. 更新异常 :如果我们调整了某个比赛的时间,那么数据表中所有这个比赛的时间都需要进行调
整,否则就会出现一场比赛时间不同的情况。
1NF 告诉我们字段属性需要是原子性的,而 2NF 告诉我们一张表就是一个独立的对象,一张表只
表达一个意思。
1.6第三范式(3rd NF)
第三范式是在第二范式的基础上,确保数据表中的每一个非主键字段都和主键字段直接相关,也就是说,要求数据表中的所有非主键字段不能依赖于其他非主键字段。(即,不能存在非主属性A依赖于非主属性B,非主属性B依赖于主键C的情况,即存在"A-->B-->C"的决定关系)通俗地讲,该规则的意思是所有非主键属性
之间不能有依赖关系,必须相互独立
。 不能存在依赖传递。
举例1:
部门信息表 :每个部门有部门编号(dept_id)、部门名称、部门简介等信息。
员工信息表 :每个员工有员工编号、姓名、部门编号。
列出部门编号后就不能再将部门名称、部门简介等与部门有关的信息再加入员工信息表中。
如果不存在部门信息表,则根据第三范式(3NF)也应该构建它,否则就会有大量的数据冗余。
若员工信息表为 :每个员工有员工编号、姓名、部门编号、部门名称。
则部门名称就依赖部门编号,部门编号依赖员工编号(即存在"A-->B-->C"的决定关系),造成不满足第三范式。
1.7 小结
关于数据表的设计,有三个范式要遵循。
(1)第一范式(1NF),确保每列保持原子性
数据库的每一列都是不可分割的原子数据项,不可再分的最小数据单元,而不能是集合、数组、记录等非原子数据项。
(2)第二范式(2NF),确保每列都和主键完全依赖
尤其在复合主键的情况向下,非主键部分不应该依赖于部分主键。
(3)第三范式(3NF),确保每列都和主键直接相关
,而不是间接相关
范式的优点:数据的标准化有助于消除数据库中的数据冗余
,第三范式(3NF)通常被认为在性能、拓展性和数据完整性方面达到了最好的平衡。
范式的缺点:范式的使用,可能降低查询的效率
。因为范式等级越高,设计出来的数据表就越多、越精细,数据的冗余度就越低,进行数据查询的时候就可能需要关联多张表
,这不但代价昂贵,也可能使一些索引策略无效
。
范式只是提出了设计的标准,实际上设计数据表时,未必一定要符合这些标准。开发中,我们会出现为了性能和读取效率违反范式化的原则,通过增加少量的冗余
或重复的数据来提高数据库的读性能
,减少关联查询,join表的次数,实现空间换取时间
的目的。因此在实际的设计过程中要理论结合实际,灵活运用。
🥯2.反范式化
2.1概述
规范化vs性能
- 为满足某种商业目标 , 数据库性能比规范化数据库更重要
- 在数据规范化的同时 , 要综合考虑数据库的性能
- 通过在给定的表中添加额外的字段,以大量减少需要从中搜索信息所需的时间
- 通过在给定的表中插入计算列,以方便查询
2.2反范式的新问题
- 存储
空间变大
了 - 一个表中字段做了修改,另一个表中冗余的字段也需要做同步修改,否则
数据不一致
- 若采用存储过程来支持数据的更新、删除等额外操作,如果更新频繁,会非常
消耗系统资源
- 在
数据量小
的情况下,反范式不能体现性能的优势,可能还会让数据库的设计更加复杂
2.3反范式的适用场景
当冗余信息有价值或者能大幅度提高查询效率
的时候,我们才会采取反范式的优化。
1.增加冗余字段的建议
1)这个冗余字段不需要经常进行修改
2)这个冗余字段查询的时候不可或缺
2.历史快照、历史数据的需要
在现实生活中,我们经常需要一些冗余信息,比如订单中的收货人信息,包括姓名、电话和地址等。每次发生的订单收货信息
都属于历史快照
,需要进行保存,但用户可以随时修改自己的信息,这时保存这些冗余信息是非常有必要的。
反范式优化也常用在数据仓库
的设计中,因为数据仓库通常存储历史数据
,对增删改的实时性要求不强,对历史数据的分析需求强。这时适当允许数据的冗余度,更方便进行数据分析。
🥯3. BCNF(巴斯范式)
主属性(仓库名)对于候选键(管理员,物品名)是部分依赖的关系,这样就有可能导致异常情况。因此引入BCNF,它在3NF的基础上消除了主属性对候选键的部分依赖或者传递依赖关系。
即非主属性不能相互依赖(BCNF),非主属性也不能相互依赖(2NF)。
如果在关系R中,U为主键,A属性是主键的一个属性,若存在A->Y,Y为主属性,则该关系不属于BCNF。
分享到此,感谢大家观看!!!
如果你喜欢这篇文章,请点赞加关注吧,或者如果你对文章有什么困惑,可以私信我。
🏓🏓🏓