【数据可视化Python库】

简介: 【数据可视化Python库】

1. Seaborn

Seaborn是Python中的一个高级可视化库,是对Matplotlib进行二次封装而成。Seaborn的很多图表接口和参数设置与Matplotlib很是接近。相比Matplotlib而言,Seaborn的几个鲜明特点如下:


绘图接口更为集成,可通过少量参数设置实现大量封装绘图


多数图表具有统计学含义,例如分布、关系、统计、回归等


对Pandas和Numpy数据类型支持非常友好


风格设置更为多样,例如风格、绘图环境和颜色配置等

参考资料

Seaborn 教程

Seaborn 示例

import numpy as np
import seaborn as sns
penguins = sns.load_dataset("penguins")
penguins  # DataFrame

1.1.png

sns.jointplot(
    data=penguins,
    x="bill_length_mm", y="bill_depth_mm", hue="species",
    kind="kde"
)

1.2.png

2. Ipyvolume

IPyvolume is a Python library to visualize 3d volumes and glyphs (e.g. 3d scatter plots), in the Jupyter notebook, with minimal configuration and effort. It is currently pre-1.0, so use at own risk. IPyvolume’s volshow is to 3d arrays what matplotlib’s imshow is to 2d arrays.

————————————————

版权声明:本文为CSDN博主「2345VOR」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/vor234/article/details/124835600

参考资料

Ipyvolume 手册

Ipyvolume 示例

import numpy as np
import ipyvolume as ipv
V = np.zeros((128,128,128)) # our 3d array
# outer box
V[30:-30,30:-30,30:-30] = 0.75
V[35:-35,35:-35,35:-35] = 0.0
# inner box
V[50:-50,50:-50,50:-50] = 0.25
V[55:-55,55:-55,55:-55] = 0.0
ipv.figure()
ipv.volshow(V, level=[0.25, 0.75], opacity=0.03, level_width=0.1, data_min=0, data_max=1)
ipv.view(-30, 40)
ipv.show()

2.png

3. Nglview

An IPython/Jupyter widget to interactively view molecular structures and trajectories. Utilizes the embeddable NGL Viewer for rendering. Support for showing data from the file-system, RCSB PDB, simpletraj and from objects of analysis libraries mdtraj, pytraj, mdanalysis, ParmEd, rdkit, ase, HTMD, biopython, cctbx, pyrosetta, schrodinger’s Structure

————————————————

版权声明:本文为CSDN博主「2345VOR」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/vor234/article/details/124835600

参考资料

nglview 手册

nglview 示例

import nglview as nv
view = nv.show_pdbid("5R7Y") # COVID-19 主蛋白酶
view

3.png

4. Bqplot


Bqplot是用于Jupyter的交互式2D绘图库,其中绘图的每个属性都是一个交互式小部件,只需几行Python代码就可以创建丰富的可视化效果。Bqplot构建在widgets框架之上,它利用widget基础提供第一个在Python和JavaScript代码之间通信的绘图库。Bqplot的可视化基于D3.js和SVG,支持快速交互和漂亮的动画。

————————————————

版权声明:本文为CSDN博主「2345VOR」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/vor234/article/details/124835600

参考资料

bqplot 手册

bqplot 示例

import numpy as np
from bqplot import pyplot as plt
size = 100
np.random.seed(0)
x_data = np.arange(size)
y_data = np.cumsum(np.random.randn(size))
figure = plt.figure(title='Bqplot Plot')
scatter = plt.scatter(x_data, y_data)
plt.show()

4.1.png

scatter.y = np.cumsum(np.random.randn(size))  # 更新数据

4.2.png

scatter.colors = ['Green']  # 更新颜色

4.3.png

4.1 动画

import time
for i in range(100):  # Update Chart
    scatter.y = np.insert(scatter.y[:-1], 0 , scatter.y[-1])
    time.sleep(0.1)

image.gif

4.2 交互

调整滑块实现调频和调幅

import numpy as np
from bqplot import pyplot as plt
from ipywidgets import interactive, FloatSlider, jslink
x = np.linspace(-5, 5, 100)
fig = plt.figure(title='Bqplot Plot')
line = plt.plot(x, np.sin(x))
plt.set_lim(-2, 2, 'y')
plt.show()
def f(a, b):
    line.y = a * np.sin(b*x)
interact_plot = interactive(f, a=(1.0, 2.0), b=(1.0, 5.0))
interact_plot

4.4.png

参考文献来自桑鸿乾老师的课件:科学计算和人工智能

————————————————

版权声明:本文为CSDN博主「2345VOR」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/vor234/article/details/124835600

————————————————

版权声明:本文为CSDN博主「2345VOR」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/vor234/article/details/124835600

目录
相关文章
|
5天前
|
数据可视化 关系型数据库 MySQL
基于python大数据的的海洋气象数据可视化平台
针对海洋气象数据量大、维度多的挑战,设计基于ECharts的可视化平台,结合Python、Django与MySQL,实现数据高效展示与交互分析,提升科研与决策效率。
|
1月前
|
机器学习/深度学习 数据可视化 搜索推荐
基于python的汽车数据可视化、推荐及预测系统
本研究围绕汽车数据可视化、推荐及预测系统展开,结合大数据与人工智能技术,旨在提升用户体验与市场竞争力。内容涵盖研究背景、意义、相关技术如 Python、ECharts、协同过滤及随机森林回归等,探讨如何挖掘汽车数据价值,实现个性化推荐与智能预测,为汽车行业智能化发展提供支持。
|
1月前
|
数据采集 Web App开发 自然语言处理
新闻热点一目了然:Python爬虫数据可视化
新闻热点一目了然:Python爬虫数据可视化
|
1月前
|
存储 人工智能 测试技术
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
本文介绍如何使用LangChain结合DeepSeek实现多轮对话,测开人员可借此自动生成测试用例,提升自动化测试效率。
336 125
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
|
1月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
122 0
|
19天前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
111 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
28天前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
224 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
1月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
1月前
|
数据采集 搜索推荐 数据可视化
基于python大数据的商品数据可视化及推荐系统
本系统基于Python、Django与ECharts,构建大数据商品可视化及推荐平台。通过爬虫获取商品数据,利用可视化技术呈现销售趋势与用户行为,结合机器学习实现个性化推荐,助力电商精准营销与用户体验提升。
|
1月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。

推荐镜像

更多