Matlab实现图像压缩

简介: Matlab实现图像压缩
文章和代码以及样例图片等相关资源,已经归档至【Github仓库: digital-image-processing-matlab】或者公众号【AIShareLab】回复 数字图像处理 也可获取。

目的

1. 理解图像压缩的相关概念及图像压缩的主要原则和目的;
2. 掌握霍夫曼编码
3. 掌握几种常见的图像压缩编码方法
4. 利用 MATLAB 程序进行图像压缩

原理

图像压缩原理

图像压缩主要目的是为了节省存储空间,增加传输速度。图像压缩的理想标准是信息丢失最少,压缩比例最大。不损失图像质量的压缩称为无损压缩,无损压缩不可能达到很高的压缩比;损失图像质量的压缩称为有损压缩,高的压缩比是以牺牲图像质量为代价的。压缩的实现方法是对图像重新进行编码,希望用更少的数据表示图像。

信息的冗余量有许多种,如空间冗余,时间冗余,结构冗余,知识冗余,视觉冗余等,数据压缩实质上是减少这些冗余量。高效编码的主要方法是尽可能去除图像中的冗余成分,从而以最小的码元包含最大的图像信息。

编码压缩方法有许多种,从不同的角度出发有不同的分类方法,从信息论角度出发可分为两大类。

(1)冗余度压缩方法,也称无损压缩、信息保持编码或嫡编码。具体说就是解码图像和压缩编码前的图像严格相同,没有失真,从数学上讲是一种可逆运算。

(2)信息量压缩方法,也称有损压缩、失真度编码或烟压缩编码。也就是说解码图像和原始图像是有差别的,允许有一定的失真。

应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分为以下 3 类:

(1)无损压缩编码种类
哈夫曼(Huffman)编码,算术编码,行程(RLE)编码,Lempel zev 编码。

(2)有损压缩编码种类

  • 预测编码,DPCM,运动补偿
  • 频率域方法:正交变换编码(如DCT),子带编码;
  • 空间域方法:统计分块编码;
  • 模型方法:分形编码,模型基编码;
  • 基于重要性:滤波,子采样,比特分配,向量量化;

(3)混合编码。 有 JBIG,H261,JPEG,MPEG 等技术标准。

离散余弦变换(DCT)图像压缩原理

离散余弦变换 DCT 在图像压缩中具有广泛的应用,它是JPEG、MPEG 等数据压缩标准的
重要数学基础。

和相同图像质量的其他常用文件格式(如GIF(可交换的图像文件格式),TIFF(标签图像文件格式),PCX(图形文件格式))相比,JPEG 是目前静态图像中压缩比最高的。JPEG 比其他几种压缩比要高得多,而图像质量都差不多(JPEG 处理的图像只有真彩图和灰度图)。正是由于其高压缩比,使得JPEG 被广泛地应用于多媒体和网络程序中。JPEG 有几种模式,其中最常用的是基于DCT 变换的顺序型模式,又称为基本系统(Baseline)。

用DCT 压缩图像的过程为:

(1)首先将输入图像分解为8×8 或16×16 的块,然后对每个子块进行二维DCT变换。
(2)将变换后得到的量化的DCT 系数进行编码和传送,形成压缩后的图像格式。

用 DCT 解压的过程为:

(1)对每个8×8 或16×16 块进行二维DCT 反变换。
(2)将反变换的矩阵的块合成一个单一的图像。

余弦变换具有把高度相关数据能量集中的趋势,DCT 变换后矩阵的能量集中在矩阵的
左上角,右下的大多数的DCT 系数值非常接近于0。对于通常的图像来说,舍弃这些接近
于0 的DCT 的系数值,并不会对重构图像的画面质量带来显著的下降。所以,利用DCT
变换进行图像压缩可以节约大量的存储空间。压缩应该在最合理地近似原图像的情况下使用
最少的系数。使用系数的多少也决定了压缩比的大小。

在压缩过程的第 2 步中,可以合理地舍弃一些系数,从而得到压缩的目的。在压缩
过程的第2 步,还可以采用RLE 和Huffman 编码来进一步压缩。

行程编码(RLE)原理

例如如下这幅的二值图像,

如果采用行程编码可以按如下格式保存

其中10 和8 表示图像的宽和高。在这个小例子中行程编码并没有起到压缩图像的作用。这是由于这个图的尺寸过小,当图像尺寸较大时行程编码还是不错的无损压缩方法。对于灰度图像和二值图像,用行程编码—般都有很高的压缩率。行程编码方法实现起来很容易,对于具有长重复值的串的压缩编码很有效,例如:对于有大面积的阴影或颜色相同的图像,使用这种方法压缩效果很好。很多位图文件格式都采用行程编码,如TIFF,PCX,GEM,BMP等。

步骤

MATLAB 中的变长码映射

clear all
clc


f2=uint8([2 3 4 2;3 2 4 4;2 2 1 2;1 1 2 2])
whos('f2')
c=huffman(hist(double(f2(:)),4))
h1f2=c(f2(:))'
whos('h1f2')
%h2f2=char(h1f2)'
h2f2=[1 0 1 0 0 1 1 0 0 0 0 1 1 0 1 1;...
' ' 1 ' ' 1 1 ' ' 1 0 0 1 ' ' 0 ' ';...
' ' 0 ' ' 1 0 ' ' 1 ' ' 1 ' ']
whos('h2f2')

h2f2=h2f2(:);
h2f2(h2f2==' ')=[];
whos('h2f2')

h3f2=mat2huff(f2)
whos('h3f2')

hcode=h3f2.code;
whos('hcode')
dec2bin(double(hcode))

%-----------------------------------------%
function CODE=huffman(p)

error(nargchk(1,1,nargin));
if(ndims(p)~=2)|(min(size(p))>1)|~isreal(p)|~isnumeric(p)
    error('p must be a real numeric vector');
end

global CODE
CODE=cell(length(p),1);%init the global cell array
if (length(p)>1) %when more than one symbol....
    p=p/sum(p);%Normalize the input probabilities
    s=reduce(p);%Do Huffman source symbol reductions
    makecode(s,[]);%Recursively(递归) generate the code
else
    CODE={'1'};%else, trivial(普通的) one symbol case
end;
%---------------------------------------------------------%

function s=reduce(p);
s=cell(length(p),1);
for i=1:length(p)
    s{i}=i;
end

while size(s)>2
    [p,i]=sort(p);%sort the symbol probabilities
    p(2)=p(1)+p(2);%Merge the 2 lowest probabilities
    p(1)=[];% and prune(,剪除、删除) the lowest one

    s=s(i);
    s{2}={s{1},s{2}};
    s(1)=[];
end
%------------------------------------------------------------%
function makecode(sc,codeword)

global CODE
if isa(sc,'cell')
    makecode(sc{1},[codeword 0]);
    makecode(sc{2},[codeword 1]);
else
    CODE{sc}=char('0'+codeword);
End
%-----------------------------------------------------------%
function y=mat2huff(x)

if ndims(x)~=2|~isreal(x)|(~isnumeric(x) & ~islogical(x))
    error('x must be a 2-D real numeric or logical matrix');
end

y.size=uint32(size(x));
x=round(double(x));
xmin=min(x(:));
xmax=max(x(:));
pmin=double(int16(xmin));
pmin=uint16(pmin+32768);%
y.min=pmin;
x=x(:)';
h=histc(x,xmin:xmax);
if max(h)>65535
    h=65535*h/max(h);
end
h=uint16(h);
y.hist=h;

%code the input matrix and store the result
map=huffman(double(h));
hx=map(x(:)-xmin+1)
hx = ['1' ' ' '1' '0' ' ' '1' '1' '0' ' ' ' '...
    '0' '1' '1' ' ' '1' '1']';
%hx=char(hx);
hx=hx(:)';
hx(hx==' ')=[];
ysize=ceil(length(hx)/16);
hx16=repmat('0',1,ysize*16);
hx16(1:length(hx))=hx;
hx16=reshape(hx16,16,ysize);
hx16=hx16' - '0';
twos=pow2(15:-1:0);
y.code=uint16(sum(hx16.*twos(ones(ysize,1),:),2))';
%-----------------------------------------------------------------------%

离散余弦变换(DCT)图像压缩

在图像的变换和压缩中,常常用到离散余弦变换(DCT)。DCT 具有能使图像的最重要的信息集中在DCT 的几个系数上的性能。正是基于此,DCT 通常应用于图像的压缩。

clear all
clc
I=imread('D:\pic\DIP3E_CH11_Original_Images\Fig1137(b)(painting_translated_padded).tif','tif');

I=im2double(I);
T=dctmtx(8);
B=blkproc(I,[8,8],'P1*x*P2',T,T');
mask=[1 1 1 1 0 0 0 0;1 1 1 0 0 0 0 0;1 1 0 0 0 0 0 0;...
        1 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;...
        0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0];
B2=blkproc(B,[8,8],'P1.*x',mask);
I2=blkproc(B2,[8,8],'P1*x*P2',T',T);
imshow(I),title('原图象');
figure,imshow(I2),title('变换后的图象');

利用离散余弦变换进行JPEG 图像压缩

clear all
clc
I=imread('D:\pic\DIP3E_CH11_Original_Images\Fig1137(b)(painting_translated_padded).tif'); %读入原图像;
I=im2double(I); %将原图像转为双精度数据类型;
T=dctmtx(8); %产生二维DCT 变换矩阵
B=blkproc(I,[8 8],'P1*x*P2',T,T'); %计算二维DCT,矩阵T 及其转置T’是DCT 函数
%P1*x*P2 的参数
mask=[ 1 1 1 1 0 0 0 0;1 1 1 0 0 0 0 0;1 1 0 0 0 0 0 0;1 0 0 0 0 0 0 0;...
    0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0];
%二值掩膜,用来压缩DCT 系数,只留下DCT 系数中左上角的10 个
B2=blkproc(B,[8 8],'P1.*x',mask); %只保留DCT 变换的10 个系数
I2= blkproc(B2,[8,8],'P1*x*P2',T',T); %逆DCT,重构图像
Subplot(1,2,1);
Imshow(I);title('原图像');%显示原图像
Subplot(1,2,2);
Imshow(I2);title('压缩图像');%显示压缩后的图像。对比原始图像和压缩后的图像,虽然
%舍弃了85%的DCT 系数,但图像仍然清晰(当然有一些质量损失)

参考文献:

[1] Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins. 2003. Digital Image Processing Using MATLAB. Prentice-Hall, Inc., USA.

[2] [阮秋琦. 数字图像处理(MATLAB版)[M]. 北京:电子工业出版社, 2014.](https://github.com/timerring/digital-image-processing-matlab/blob/main/reference/Digital_Image_Processing_(MATLAB_version).pdf)

[3] [冈萨雷斯. 数字图像处理(第三版)[M]. 北京:电子工业出版社, 2011.](https://github.com/timerring/digital-image-processing-matlab/blob/main/reference/Digital_Image_Processing_(Third_Edition).pdf)

目录
相关文章
|
7月前
|
机器学习/深度学习 算法 网络架构
基于yolov2深度学习网络的人脸检测matlab仿真,图像来自UMass数据集
**YOLOv2算法在MATLAB2022a中实现人脸检测:** 展示6个检测结果图,利用Darknet-19进行特征提取,网络每个网格预测BBox,包含中心偏移、尺寸、置信度和类别概率。多任务损失函数结合定位、置信度和分类误差。程序加载预训练模型,遍历图像,对检测到的人脸以0.15阈值画出边界框并显示。
|
7月前
|
算法
m基于OFDM+QPSK和LDPC编译码以及MMSE信道估计的无线图像传输matlab仿真,输出误码率,并用图片进行测试
MATLAB2022a仿真实现了无线图像传输的算法,包括OFDM、QPSK调制、LDPC编码和MMSE信道估计。OFDM抗频率选择性衰落,QPSK用相位表示二进制,LDPC码用于前向纠错,MMSE估计信道响应。算法流程涉及编码、调制、信道估计、均衡、解码和图像重建。MATLAB代码展示了从串行数据到OFDM信号的生成,经过信道模型、噪声添加,再到接收端的信道估计和解码过程,最终计算误码率。
80 1
|
2月前
|
算法 数据安全/隐私保护
织物图像的配准和拼接算法的MATLAB仿真,对比SIFT,SURF以及KAZE
本项目展示了织物瑕疵检测中的图像拼接技术,使用SIFT、SURF和KAZE三种算法。通过MATLAB2022a实现图像匹配、配准和拼接,最终检测并分类织物瑕疵。SIFT算法在不同尺度和旋转下保持不变性;SURF算法提高速度并保持鲁棒性;KAZE算法使用非线性扩散滤波器构建尺度空间,提供更先进的特征描述。展示视频无水印,代码含注释及操作步骤。
|
3月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
5月前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
6月前
|
机器学习/深度学习 算法 固态存储
m基于深度学习的卫星遥感图像轮船检测系统matlab仿真,带GUI操作界面
在MATLAB 2022a中,使用GoogLeNet对卫星遥感图像进行轮船检测,展示了高效的目标识别。GoogLeNet的Inception架构结合全局平均池化增强模型泛化性。核心代码将图像切块并分类,预测为轮船的部分被突出显示,体现了深度学习在复杂场景检测中的应用。
410 8
|
6月前
|
算法 计算机视觉 异构计算
基于FPGA的图像一维FFT变换IFFT逆变换verilog实现,包含tb测试文件和MATLAB辅助验证
```markdown ## FPGA 仿真与 MATLAB 显示 - 图像处理的 FFT/IFFT FPGA 实现在 Vivado 2019.2 中仿真,结果通过 MATLAB 2022a 展示 - 核心代码片段:`Ddddddddddddddd` - 理论:FPGA 实现的一维 FFT/IFFT,加速数字信号处理,适用于高计算需求的图像应用,如压缩、滤波和识别 ```
|
6月前
|
算法 计算机视觉
基于Chan-Vese算法的图像边缘提取matlab仿真
**算法预览展示了4幅图像,从边缘检测到最终分割,体现了在matlab2022a中应用的Chan-Vese水平集迭代过程。核心代码段用于更新水平集并显示迭代效果,最后生成分割结果及误差曲线。Chan-Vese模型(2001)是图像分割的经典方法,通过最小化能量函数自动检测平滑区域和清晰边界的图像分割,适用于复杂环境,广泛应用于医学影像和机器视觉。**
|
7月前
|
算法 数据安全/隐私保护 C++
基于二维CS-SCHT变换和扩频方法的彩色图像水印嵌入和提取算法matlab仿真
该内容是关于一个图像水印算法的描述。在MATLAB2022a中运行,算法包括水印的嵌入和提取。首先,RGB图像转换为YUV格式,然后水印通过特定规则嵌入到Y分量中,并经过Arnold置乱增强安全性。水印提取时,经过逆过程恢复,使用了二维CS-SCHT变换和噪声对比度(NC)计算来评估水印的鲁棒性。代码中展示了从RGB到YUV的转换、水印嵌入、JPEG压缩攻击模拟以及水印提取的步骤。
|
6月前
|
算法 计算机视觉 异构计算
基于FPGA的图像直方图均衡化处理verilog实现,包含tb测试文件和MATLAB辅助验证
摘要: 在FPGA上实现了图像直方图均衡化算法,通过MATLAB2022a与Vivado2019.2进行仿真和验证。核心程序涉及灰度直方图计算、累积分布及映射变换。算法旨在提升图像全局对比度,尤其适合低对比度图像。FPGA利用可编程增益器和查表技术加速硬件处理,实现像素灰度的均匀重分布,提升视觉效果。![image preview](https://ucc.alicdn.com/pic/developer-ecology/3tnl7rfrqv6tw_a075525027db4afbb9c0529921fd0152.png)