分类卷积网络的可视化【附代码】

简介: 笔记

写了一个有关对卷积网络可视化的小工具,可以直接调用使用,不需要对网络重新训练!【如果用在目标检测网络或者其他网络中需要稍微进行修改】

直接附代码:

import cv2
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
def Cnn_View(cnn_output, classes_layer, Or_img):
    '''
    cnn_output.size(1)是获得上一层的通道数
    如果你用的是CPU推理的,那么在cam处你应该将张量放在cpu上【我这里默认用的cuda】
    因为我的网络输入大小为224*224大小,所以需要对resize成224*224,以保证叠加图像大小一致!!
    最后将热力图和原始图进行一个叠加
    本代码是放在平均池化之后,分类层之前的,即classes_layer是定义的全连接层,如果放在其他层可以把该层注释掉
    '''
    Or_img = cv2.imread(Or_img)
    cam = nn.Conv2d(cnn_output.size(1), 1, 1, 1, 1).cuda()  # 512是上一层卷积输出后的通道,可以根据自己的网络修改
    cnn_output1 = cnn_output
    cnn_output = torch.flatten(cnn_output, 1)  # 平铺  (batch_size,512*7*7)
    cnn_output = classes_layer(cnn_output)  # 分类  (batch_size,512*7*7,num_classes)
    preds = torch.softmax(cnn_output[0], dim=-1).cpu().numpy()
    cam_output = cam(cnn_output1)
    cam_output[0, :, :, 1] = cam_output[0, :, :, 1 if preds.all() > 0.5 else 0]
    cam_output /= 10
    cam_output[cam_output < 0] = 0
    cam_output[cam_output > 1] = 1
    cam_output = cam_output.cpu().numpy()
    cam_output = cam_output.squeeze(0)
    img = cam_output.transpose(1, 2, 0)
    img = cv2.resize(img, (224, 224))
    img = np.uint8(255 * img)
    heatmap = cv2.applyColorMap(img, cv2.COLORMAP_JET)
    Or_img = cv2.resize(Or_img, (224, 224))
    out = cv2.addWeighted(Or_img, 0.8, heatmap, 0.4, 0)
    plt.axis('off')
    plt.imshow(out[:, :, ::-1])
    plt.show()

在网络中调用该函数,放在网络的forward(self,x)函数下,如果是分类网络,可以放在平均池化层后面

例如:

    def forward(self, x):
        x = self.features(x)  # 主干网络  14*14输出通道512
        x = self.avgpool(x)  # 平均池化  7*7输出通道512   (batch_size,512,7,7)
        Cnn_View(x, self.classifier, input("输入要叠加的原始图像: "))

最终得到的热力图和原始图叠加后:image.pngimage.pngimage.png

这样可以更进一步理解卷积的可视化,还有就是可以放在论文中,使自己的论文看着更好看点。放在目标检测中应该需要对上面稍微改一下。

目录
相关文章
|
11天前
|
机器学习/深度学习 编解码 算法
YOLOv5改进 | 主干网络 | 用EfficientNet卷积替换backbone【教程+代码 】
在YOLOv5的GFLOPs计算量中,卷积占了其中大多数的比列,为了减少计算量,研究人员提出了用EfficientNet代替backbone。本文给大家带来的教程是**将原来的主干网络替换为EfficientNet。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。
|
13天前
|
机器学习/深度学习 编解码 边缘计算
YOLOv5改进 | 卷积模块 | 用ShuffleNetV2卷积替换Conv【轻量化网络】
本文介绍了如何在YOLOv5中用ShuffleNetV2替换卷积以减少计算量。ShuffleNetV2是一个轻量级网络,采用深度可分离卷积、通道重组和多尺度特征融合技术。文中提供了一个逐步教程,包括ShuffleNetV2模块的代码实现和在YOLOv5配置文件中的添加方法。此外,还分享了完整的代码链接和GFLOPs的比较,显示了GFLOPs的显著减少。该教程适合初学者实践,以提升深度学习目标检测技能。
YOLOv5改进 | 卷积模块 | 用ShuffleNetV2卷积替换Conv【轻量化网络】
|
2天前
|
机器学习/深度学习 数据可视化 计算机视觉
【YOLOv8改进】MCA:用于图像识别的深度卷积神经网络中的多维协作注意力 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO的创新改进和实战案例,包括多维协作注意力(MCA)机制,它通过三分支架构同时处理通道、高度和宽度注意力,提高CNN性能。MCA设计了自适应组合和门控机制,增强特征表示,且保持轻量化。该模块适用于各种CNN,实验证明其在图像识别任务上的优越性。此外,文章还展示了如何在YOLOv8中引入MCA层的代码实现和相关任务配置。
|
3天前
|
机器学习/深度学习 人工智能 算法
中草药识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型
中草药识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型
17 0
|
5天前
|
机器学习/深度学习 自然语言处理 算法
深入解析深度学习中的卷积神经网络:从理论到实践
深入解析深度学习中的卷积神经网络:从理论到实践
23 0
|
5天前
|
机器学习/深度学习 算法 计算机视觉
YOLOv8 | 卷积模块 | 提高网络的灵活性和表征能力的动态卷积【附代码+小白可上手】
本教程介绍了如何在YOLOv8中使用动态卷积提升网络性能和灵活性。动态卷积利用注意力机制动态选择和组合卷积核,适应输入数据特征,解决了轻量级CNN的局限。文中提供了详细步骤教读者如何添加和修改代码,包括在`conv.py`中添加`Dynamic_conv2d`模块,更新`init.py`、`task.py`和`yaml`配置文件。此外,还分享了完整代码和进阶技巧,帮助深度学习初学者实践目标检测。参考[YOLOv8改进](https://blog.csdn.net/m0_67647321/category_12548649.html)专栏获取更多详情。
|
10天前
|
机器学习/深度学习 算法 计算机视觉
YOLOv8改进 | 融合模块 | 用Resblock+CBAM卷积替换Conv【轻量化网络】
在这个教程中,介绍了如何将YOLOv8的目标检测模型改进,用Resblock+CBAM替换原有的卷积层。Resblock基于ResNet的残差学习思想,减少信息丢失,而CBAM是通道和空间注意力模块,增强网络对特征的感知。教程详细解释了ResNet和CBAM的原理,并提供了代码示例展示如何在YOLOv8中实现这一改进。此外,还给出了新增的yaml配置文件示例以及如何注册模块和执行程序。作者分享了完整的代码,并对比了改进前后的GFLOPs计算量,强调了这种改进在提升性能的同时可能增加计算需求。教程适合深度学习初学者实践和提升YOLO系列模型的性能。
|
13天前
|
机器学习/深度学习 人工智能 算法
食物识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型
食物识别系统采用TensorFlow的ResNet50模型,训练了包含11类食物的数据集,生成高精度H5模型。系统整合Django框架,提供网页平台,用户可上传图片进行食物识别。效果图片展示成功识别各类食物。[查看演示视频、代码及安装指南](https://www.yuque.com/ziwu/yygu3z/yhd6a7vai4o9iuys?singleDoc#)。项目利用深度学习的卷积神经网络(CNN),其局部感受野和权重共享机制适于图像识别,广泛应用于医疗图像分析等领域。示例代码展示了一个使用TensorFlow训练的简单CNN模型,用于MNIST手写数字识别。
38 3
|
16天前
|
机器学习/深度学习 JSON PyTorch
图神经网络入门示例:使用PyTorch Geometric 进行节点分类
本文介绍了如何使用PyTorch处理同构图数据进行节点分类。首先,数据集来自Facebook Large Page-Page Network,包含22,470个页面,分为四类,具有不同大小的特征向量。为训练神经网络,需创建PyTorch Data对象,涉及读取CSV和JSON文件,处理不一致的特征向量大小并进行归一化。接着,加载边数据以构建图。通过`Data`对象创建同构图,之后数据被分为70%训练集和30%测试集。训练了两种模型:MLP和GCN。GCN在测试集上实现了80%的准确率,优于MLP的46%,展示了利用图信息的优势。
27 1
|
18天前
|
机器学习/深度学习 算法 PyTorch
卷积神经网络的结构组成与解释(详细介绍)
卷积神经网络的结构组成与解释(详细介绍)
41 0