面试必备算法|图解快速排序(Python)

简介: python图解快速排序

快速排序

快速排序的思想

​ 快速排序通过一次排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。具体步骤如下:

  • 从数列中挑出一个元素,称为"基准"(pivot);
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区操作;
  • 递归地把小于基准值元素的子数列和大于基准值元素的子数列排序。

图解快速排序

​ 这里展示放置第一个基准的过程,首先选择第一个数字作为基准。

在这里插入图片描述

​ 接下来我们在26和20的位置分别设置两个指针low和high,并用maddle来存储基准的值(使得列表中基准的位置可以用于元素替换)

在这里插入图片描述

​ 现在我们的目的是让小的数字在前面,大的数字在后面,鉴于我们现在在第一个基准的位置可以用于元素的替换(此处可以看作为空),所以我们从high指针开始进行操作(遍历向前直到找到比基准小的数字)。

在这里插入图片描述

​ 此时我们可以知道high的位置为空,也就是说high的位置可以用作下一个元素的存储位置,因此此时我们转换到操作low指针,通过low指针找到比基准54大的元素。

在这里插入图片描述

​ 和上面同样的原理,我们再继续操作high指针(这里展示剩下交换的过程,如果理解交换过程可以跳过)

在这里插入图片描述

​ 最后如果我们再把指针进行左移操作,就会使得low和high指针重合,此时重合的位置也就是我们最开始找到的基准(54)的位置,至此,我们就可以把基准(54)放到该位置上了。

在这里插入图片描述

​ 此时我们会发现在54前面的数字都比54小,后面的数字都比54大,这也就证明我们已经找好了54的位置,后续我们将54作为切分点,把前面和后面分成两个子列表并递归的执行上诉同样思想的操作就可以了。

快速排序的性质

最优时间复杂度:$O(nlog_2n)$
最坏时间复杂度:$O(n^2)$
稳定性:不稳定

快速排序代码实现

# start/end表示起始指针的位置(不是具体的值)
lst = list(map(int, input().split(',')))


def quick_sort(alist, start, end):
    # 如果前指针的位置大于等于后指针的位置

    if start >= end:
        return

    low = start
    high = end
    middle = alist[low]

    while low < high:
        while low < high and alist[high] >= middle:
            high -= 1
        alist[low] = alist[high]
        while low < high and alist[low] <= middle:
            low += 1
        alist[high] = alist[low]
    alist[low] = middle

    quick_sort(alist, start, low - 1)
    quick_sort(alist, low + 1, end)


quick_sort(lst, 0, len(lst) - 1)
print(lst)
相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
111 55
|
21天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
124 67
|
21天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
115 61
|
15天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
93 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
21天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
21天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
15天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
21天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
1天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
8天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。