python-33品种随机游走检验

简介: python-33品种随机游走检验
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 22 17:03:16 2017
@author: yunjinqi 
E-mail:yunjinqi@qq.com 
Differentiate yourself in the world from anyone else.
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.tsa.stattools as ts
import statsmodels.api as sm
from statsmodels.graphics.api import qqplot
from statsmodels.sandbox.stats.runs import runstest_1samp
namelist=['cu','al','zn','pb','sn','au','ag','rb','hc','bu','ru','m9','y9','a9',
              'p9','c9','cs','jd','l9','v9','pp','j9','jm','i9','sr','cf',
              'zc','fg','ta','ma','oi','rm','sm']
j=0
for i in namelist:
    filename='C:/Users/HXWD/Desktop/数据/'+i+'.csv'
    data=pd.read_csv(filename,encoding='gbk')
    data.columns=['date','open','high','low','close','amt','opi']
    data.head()
    data=np.log(data['close'])
    r=data-data.shift(1)
    r=r.dropna()
    #print(r)
    x = np.array(r)
    x[x>=0]=1
    x[x<0]=0
    t=runstest_1samp(x)
    if abs(t[0])<1.96 and t[1]>0.05:
        print('{}该收益序列属于随机游走'.format(i))


结果:


sn该收益序列属于随机游走


rb该收益序列属于随机游走


hc该收益序列属于随机游走


cs该收益序列属于随机游走


jd该收益序列属于随机游走


l9该收益序列属于随机游走


pp该收益序列属于随机游走


j9该收益序列属于随机游走


jm该收益序列属于随机游走


i9该收益序列属于随机游走


zc该收益序列属于随机游走


ta该收益序列属于随机游走


ma该收益序列属于随机游走


oi该收益序列属于随机游走


rm该收益序列属于随机游走


sm该收益序列属于随机游走



目录
相关文章
|
8天前
|
BI Python
SciPy 教程 之 Scipy 显著性检验 8
本教程介绍SciPy中显著性检验的应用,包括如何利用scipy.stats模块进行显著性检验,以判断样本与总体假设间的差异是否显著。通过示例代码展示了如何使用describe()函数获取数组的统计描述信息,如观测次数、最小最大值、均值、方差等。
18 1
|
9天前
|
Python
SciPy 教程 之 Scipy 显著性检验 7
SciPy 教程之 Scipy 显著性检验第7部分,介绍显著性检验的基本概念及其在 SciPy 中的应用。显著性检验用于评估样本数据与假设之间的差异是否由随机因素引起。SciPy 的 `scipy.stats` 模块提供了执行显著性检验的功能,包括 KS 检验等方法,用于检测数据是否符合特定分布。示例代码展示了如何使用 KS 检验验证一组数据是否符合正态分布。
14 2
|
11天前
|
Python
SciPy 教程 之 Scipy 显著性检验 3
本教程介绍Scipy显著性检验,包括其基本概念、原理及应用。显著性检验用于判断样本与总体假设间的差异是否显著,是统计学中的重要工具。Scipy通过`scipy.stats`模块提供了相关功能,支持双边检验等方法。
20 1
|
11天前
|
Python
SciPy 教程 之 Scipy 显著性检验 1
本教程介绍Scipy显著性检验,包括统计假设、零假设和备择假设等概念,以及如何使用scipy.stats模块进行显著性检验,以判断样本与总体假设间是否存在显著差异。
19 0
|
3月前
|
自然语言处理 算法 数据挖掘
基于python豆瓣电影评论的情感分析和聚类分析,聚类分析有手肘法进行检验,情感分析用snownlp
本文介绍了一个基于Python的情感分析和聚类分析项目,使用snownlp库对豆瓣电影评论进行情感分析,并采用手肘法辅助K-means算法进行聚类分析,以探索评论中的不同主题和情感集群。
基于python豆瓣电影评论的情感分析和聚类分析,聚类分析有手肘法进行检验,情感分析用snownlp
|
6月前
|
数据可视化 数据挖掘 Python
Python时间序列分析苹果股票数据:分解、平稳性检验、滤波器、滑动窗口平滑、移动平均、可视化(下)
Python时间序列分析苹果股票数据:分解、平稳性检验、滤波器、滑动窗口平滑、移动平均、可视化
|
6月前
|
数据可视化 API 开发者
Python时间序列分析苹果股票数据:分解、平稳性检验、滤波器、滑动窗口平滑、移动平均、可视化(上)
Python时间序列分析苹果股票数据:分解、平稳性检验、滤波器、滑动窗口平滑、移动平均、可视化
|
3月前
|
数据挖掘 Python
【Python数据分析】假设检验的基本思想、原理和步骤
文章详细介绍了假设检验的基本思想、原理、可能犯的错误类型、基本步骤以及在不同总体情况下的检验方法,阐述了如何在Python中应用假设检验,并通过P值来判断假设的可靠性。
56 1
|
3月前
|
算法 数据可视化 搜索推荐
基于python的k-means聚类分析算法,对文本、数据等进行聚类,有轮廓系数和手肘法检验
本文详细介绍了基于Python实现的k-means聚类分析算法,包括数据准备、预处理、标准化、聚类数目确定、聚类分析、降维可视化以及结果输出的完整流程,并应用该算法对文本数据进行聚类分析,展示了轮廓系数法和手肘法检验确定最佳聚类数目的方法。
103 0
|
6月前
|
存储 机器学习/深度学习 数据可视化
Python面板时间序列数据预测:格兰杰因果关系检验Granger causality test药品销售实例与可视化
Python面板时间序列数据预测:格兰杰因果关系检验Granger causality test药品销售实例与可视化
下一篇
无影云桌面