使用JAX实现完整的Vision Transformer

简介: 本文将展示如何使用JAX/Flax实现Vision Transformer (ViT),以及如何使用JAX/Flax训练ViT。

Vision Transformer

在实现Vision Transformer时,首先要记住这张图。

以下是论文描述的ViT执行过程。

从输入图像中提取补丁图像,并将其转换为平面向量。

投影到 Transformer Encoder 来处理的维度

预先添加一个可学习的嵌入([class]标记),并添加一个位置嵌入。

由 Transformer Encoder 进行编码处理

使用[class]令牌作为输出,输入到MLP进行分类。

细节实现

下面,我们将使用JAX/Flax创建每个模块。

1、图像到展平的图像补丁

下面的代码从输入图像中提取图像补丁。这个过程通过卷积来实现,内核大小为patch_size patch_size, stride为patch_size patch_size,以避免重复。

 classPatches(nn.Module):
   patch_size: int
   embed_dim: int
 
   defsetup(self):
     self.conv=nn.Conv(
         features=self.embed_dim,
         kernel_size=(self.patch_size, self.patch_size),
         strides=(self.patch_size, self.patch_size),
         padding='VALID'
     )
 
   def__call__(self, images):
     patches=self.conv(images)
     b, h, w, c=patches.shape
     patches=jnp.reshape(patches, (b, h*w, c))
     returnpatches

2和3、对展平补丁块的线性投影/添加[CLS]标记/位置嵌入

Transformer Encoder 对所有层使用相同的尺寸大小hidden_dim。上面创建的补丁块向量被投影到hidden_dim维度向量上。与BERT一样,有一个CLS令牌被添加到序列的开头,还增加了一个可学习的位置嵌入来保存位置信息。

 classPatchEncoder(nn.Module):
   hidden_dim: int
 
   @nn.compact
   def__call__(self, x):
     assertx.ndim==3
     n, seq_len, _=x.shape
     # Hidden dim
     x=nn.Dense(self.hidden_dim)(x)
     # Add cls token
     cls=self.param('cls_token', nn.initializers.zeros, (1, 1, self.hidden_dim))
     cls=jnp.tile(cls, (n, 1, 1))
     x=jnp.concatenate([cls, x], axis=1)
     # Add position embedding
     pos_embed=self.param(
         'position_embedding', 
         nn.initializers.normal(stddev=0.02), # From BERT
         (1, seq_len+1, self.hidden_dim)
     )
     returnx+pos_embed

4、Transformer encoder

如上图所示,编码器由多头自注意(MSA)和MLP交替层组成。Norm层 (LN)在MSA和MLP块之前,残差连接在块之后。

 classTransformerEncoder(nn.Module):
   embed_dim: int
   hidden_dim: int
   n_heads: int
   drop_p: float
   mlp_dim: int
 
   defsetup(self):
     self.mha=MultiHeadSelfAttention(self.hidden_dim, self.n_heads, self.drop_p)
     self.mlp=MLP(self.mlp_dim, self.drop_p)
     self.layer_norm=nn.LayerNorm(epsilon=1e-6)
   
   def__call__(self, inputs, train=True):
     # Attention Block
     x=self.layer_norm(inputs)
     x=self.mha(x, train)
     x=inputs+x
     # MLP block
     y=self.layer_norm(x)
     y=self.mlp(y, train)
 
     returnx+y

MLP是一个两层网络。激活函数是GELU。本文将Dropout应用于Dense层之后。

 classMLP(nn.Module):
   mlp_dim: int
   drop_p: float
   out_dim: Optional[int] =None
 
   @nn.compact
   def__call__(self, inputs, train=True):
     actual_out_dim=inputs.shape[-1] ifself.out_dimisNoneelseself.out_dim
     x=nn.Dense(features=self.mlp_dim)(inputs)
     x=nn.gelu(x)
     x=nn.Dropout(rate=self.drop_p, deterministic=nottrain)(x)
     x=nn.Dense(features=actual_out_dim)(x)
     x=nn.Dropout(rate=self.drop_p, deterministic=nottrain)(x)
     returnx

多头自注意(MSA)

qkv的形式应为[B, N, T, D],如Single Head中计算权重和注意力后,应输出回原维度[B, T, C=N*D]。

 classMultiHeadSelfAttention(nn.Module):
   hidden_dim: int
   n_heads: int
   drop_p: float
 
   defsetup(self):
     self.q_net=nn.Dense(self.hidden_dim)
     self.k_net=nn.Dense(self.hidden_dim)
     self.v_net=nn.Dense(self.hidden_dim)
 
     self.proj_net=nn.Dense(self.hidden_dim)
 
     self.att_drop=nn.Dropout(self.drop_p)
     self.proj_drop=nn.Dropout(self.drop_p)
 
   def__call__(self, x, train=True):
     B, T, C=x.shape# batch_size, seq_length, hidden_dim
     N, D=self.n_heads, C//self.n_heads# num_heads, head_dim
     q=self.q_net(x).reshape(B, T, N, D).transpose(0, 2, 1, 3) # (B, N, T, D)
     k=self.k_net(x).reshape(B, T, N, D).transpose(0, 2, 1, 3)
     v=self.v_net(x).reshape(B, T, N, D).transpose(0, 2, 1, 3)
 
     # weights (B, N, T, T)
     weights=jnp.matmul(q, jnp.swapaxes(k, -2, -1)) /math.sqrt(D)
     normalized_weights=nn.softmax(weights, axis=-1)
 
     # attention (B, N, T, D)
     attention=jnp.matmul(normalized_weights, v)
     attention=self.att_drop(attention, deterministic=nottrain)
 
     # gather heads
     attention=attention.transpose(0, 2, 1, 3).reshape(B, T, N*D)
 
     # project
     out=self.proj_drop(self.proj_net(attention), deterministic=nottrain)
 
     returnout

5、使用CLS嵌入进行分类

最后MLP头(分类头)。

 classViT(nn.Module):
   patch_size: int
   embed_dim: int
   hidden_dim: int
   n_heads: int
   drop_p: float
   num_layers: int
   mlp_dim: int
   num_classes: int
 
   defsetup(self):
     self.patch_extracter=Patches(self.patch_size, self.embed_dim)
     self.patch_encoder=PatchEncoder(self.hidden_dim)
     self.dropout=nn.Dropout(self.drop_p)
     self.transformer_encoder=TransformerEncoder(self.embed_dim, self.hidden_dim, self.n_heads, self.drop_p, self.mlp_dim)
     self.cls_head=nn.Dense(features=self.num_classes)
 
   def__call__(self, x, train=True):
     x=self.patch_extracter(x)
     x=self.patch_encoder(x)
     x=self.dropout(x, deterministic=nottrain)
     foriinrange(self.num_layers):
       x=self.transformer_encoder(x, train)
     # MLP head
     x=x[:, 0] # [CLS] token
     x=self.cls_head(x)
     returnx

使用JAX/Flax训练

现在已经创建了模型,下面就是使用JAX/Flax来训练。

数据集

这里我们直接使用 torchvision的CIFAR10.

首先是一些工具函数

 defimage_to_numpy(img):
   img=np.array(img, dtype=np.float32)
   img= (img/255.-DATA_MEANS) /DATA_STD
   returnimg
 
 defnumpy_collate(batch):
   ifisinstance(batch[0], np.ndarray):
     returnnp.stack(batch)
   elifisinstance(batch[0], (tuple, list)):
     transposed=zip(*batch)
     return [numpy_collate(samples) forsamplesintransposed]
   else:
     returnnp.array(batch)

然后是训练和测试的dataloader

 test_transform=image_to_numpy
 train_transform=transforms.Compose([
     transforms.RandomHorizontalFlip(),
     transforms.RandomResizedCrop((IMAGE_SIZE, IMAGE_SIZE), scale=CROP_SCALES, ratio=CROP_RATIO),
     image_to_numpy
 ])
 
 # Validation set should not use the augmentation.
 train_dataset=CIFAR10('data', train=True, transform=train_transform, download=True)
 val_dataset=CIFAR10('data', train=True, transform=test_transform, download=True)
 train_set, _=torch.utils.data.random_split(train_dataset, [45000, 5000], generator=torch.Generator().manual_seed(SEED))
 _, val_set=torch.utils.data.random_split(val_dataset, [45000, 5000], generator=torch.Generator().manual_seed(SEED))
 test_set=CIFAR10('data', train=False, transform=test_transform, download=True)
 
 train_loader=torch.utils.data.DataLoader(
     train_set, batch_size=BATCH_SIZE, shuffle=True, drop_last=True, num_workers=2, persistent_workers=True, collate_fn=numpy_collate,
 )
 val_loader=torch.utils.data.DataLoader(
     val_set, batch_size=BATCH_SIZE, shuffle=False, drop_last=False, num_workers=2, persistent_workers=True, collate_fn=numpy_collate,
 )
 test_loader=torch.utils.data.DataLoader(
     test_set, batch_size=BATCH_SIZE, shuffle=False, drop_last=False, num_workers=2, persistent_workers=True, collate_fn=numpy_collate,
 )

初始化模型

初始化ViT模型

 definitialize_model(
     seed=42,
     patch_size=16, embed_dim=192, hidden_dim=192,
     n_heads=3, drop_p=0.1, num_layers=12, mlp_dim=768, num_classes=10
 ):
   main_rng=jax.random.PRNGKey(seed)
   x=jnp.ones(shape=(5, 32, 32, 3))
   # ViT
   model=ViT(
       patch_size=patch_size,
       embed_dim=embed_dim,
       hidden_dim=hidden_dim,
       n_heads=n_heads,
       drop_p=drop_p,
       num_layers=num_layers,
       mlp_dim=mlp_dim,
       num_classes=num_classes
   )
   main_rng, init_rng, drop_rng=random.split(main_rng, 3)
   params=model.init({'params': init_rng, 'dropout': drop_rng}, x, train=True)['params']
   returnmodel, params, main_rng
 
 vit_model, vit_params, vit_rng=initialize_model()

创建TrainState

在Flax中常见的模式是创建管理训练的状态的类,包括轮次、优化器状态和模型参数等等。还可以通过在apply_fn中指定apply_fn来减少学习循环中的函数参数列表,apply_fn对应于模型的前向传播。

 defcreate_train_state(
     model, params, learning_rate
 ):
   optimizer=optax.adam(learning_rate)
   returntrain_state.TrainState.create(
       apply_fn=model.apply,
       tx=optimizer,
       params=params
   )
   
   state=create_train_state(vit_model, vit_params, 3e-4)

循环训练

 deftrain_model(train_loader, val_loader, state, rng, num_epochs=100):
   best_eval=0.0
   forepoch_idxintqdm(range(1, num_epochs+1)):
     state, rng=train_epoch(train_loader, epoch_idx, state, rng)
     ifepoch_idx%1==0:
       eval_acc=eval_model(val_loader, state, rng)
       logger.add_scalar('val/acc', eval_acc, global_step=epoch_idx)
       ifeval_acc>=best_eval:
         best_eval=eval_acc
         save_model(state, step=epoch_idx)
       logger.flush()
   # Evaluate after training
   test_acc=eval_model(test_loader, state, rng)
   print(f'test_acc: {test_acc}')
   
 deftrain_epoch(train_loader, epoch_idx, state, rng):
   metrics=defaultdict(list)
   forbatchintqdm(train_loader, desc='Training', leave=False):
     state, rng, loss, acc=train_step(state, rng, batch)
     metrics['loss'].append(loss)
     metrics['acc'].append(acc)
   forkeyinmetrics.keys():
     arg_val=np.stack(jax.device_get(metrics[key])).mean()
     logger.add_scalar('train/'+key, arg_val, global_step=epoch_idx)
     print(f'[epoch {epoch_idx}] {key}: {arg_val}')
   returnstate, rng

验证

 defeval_model(data_loader, state, rng):
   # Test model on all images of a data loader and return avg loss
   correct_class, count=0, 0
   forbatchindata_loader:
     rng, acc=eval_step(state, rng, batch)
     correct_class+=acc*batch[0].shape[0]
     count+=batch[0].shape[0]
   eval_acc= (correct_class/count).item()
   returneval_acc

训练步骤

在train_step中定义损失函数,计算模型参数的梯度,并根据梯度更新参数;在value_and_gradients方法中,计算状态的梯度。在apply_gradients中,更新TrainState。交叉熵损失是通过apply_fn(与model.apply相同)计算logits来计算的,apply_fn是在创建TrainState时指定的。

 @jax.jit
 deftrain_step(state, rng, batch):
   loss_fn=lambdaparams: calculate_loss(params, state, rng, batch, train=True)
   # Get loss, gradients for loss, and other outputs of loss function
   (loss, (acc, rng)), grads=jax.value_and_grad(loss_fn, has_aux=True)(state.params)
   # Update parameters and batch statistics
   state=state.apply_gradients(grads=grads)
   returnstate, rng, loss, acc

计算损失

 defcalculate_loss(params, state, rng, batch, train):
   imgs, labels=batch
   rng, drop_rng=random.split(rng)
   logits=state.apply_fn({'params': params}, imgs, train=train, rngs={'dropout': drop_rng})
   loss=optax.softmax_cross_entropy_with_integer_labels(logits=logits, labels=labels).mean()
   acc= (logits.argmax(axis=-1) ==labels).mean()
   returnloss, (acc, rng)

结果

训练结果如下所示。在Colab pro的标准GPU上,训练时间约为1.5小时。

 test_acc: 0.7704000473022461

如果你对JAX感兴趣,请看这里是本文的完整代码:

https://avoid.overfit.cn/post/926b7965ba56464ba151cbbfb6a98a93

作者:satojkovic

目录
相关文章
|
6月前
|
机器学习/深度学习 自然语言处理 并行计算
[Bert]论文实现:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
[Bert]论文实现:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
76 1
|
机器学习/深度学习 PyTorch 算法框架/工具
【Transformer系列(5)】Transformer代码超详细解读(Pytorch)
【Transformer系列(5)】Transformer代码超详细解读(Pytorch)
677 1
【Transformer系列(5)】Transformer代码超详细解读(Pytorch)
|
机器学习/深度学习 编解码 自然语言处理
Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation论文解读
在过去的几年中,卷积神经网络(CNN)在医学图像分析方面取得了里程碑式的进展。特别是基于U型结构和跳跃连接的深度神经网络在各种医学图像任务中得到了广泛的应用。
692 0
|
机器学习/深度学习 编解码 自然语言处理
【18】Vision Transformer:笔记总结与pytorch实现
【18】Vision Transformer:笔记总结与pytorch实现
850 0
【18】Vision Transformer:笔记总结与pytorch实现
|
SQL API
【vision transformer】DETR原理及代码详解(四)
【vision transformer】DETR原理及代码详解
540 0
|
Shell 开发工具 计算机视觉
【vision transformer】DETR原理及代码详解(三)
【vision transformer】DETR原理及代码详解
199 0
【vision transformer】DETR原理及代码详解(二)
【vision transformer】DETR原理及代码详解
99 0
|
机器学习/深度学习 算法 PyTorch
【vision transformer】DETR原理及代码详解(一)
【vision transformer】DETR原理及代码详解
1357 0
|
机器学习/深度学习 编解码 自然语言处理
Swin Transformer Hierarchical Vision Transformer using Shifted Windows论文解读
本文提出了一种新的Vision Transformer,称为Swin Transformer,它能够作为计算机视觉的通用骨干网络。将Transformer从语言转化为视觉的挑战来自于两个领域之间的差异
230 0
|
机器学习/深度学习 编解码
Vision Transformer(VIT)原理总结
Vision Transformer(VIT)原理总结
422 0