【pyTorch】nn.ReLU(inplace=True)中inplace的作用

简介: nn.ReLU(inplace=True)中inplace的作用

我们用PyTorch搭建神经网络时,会遇到nn.ReLU(inplace=True),inplace=True是什么意思呢?

nn.Conv2d(64,192,kernel_size=3,stride=1,padding=1), 
nn.ReLu(inpalce=True),# inplace为True,默认为False

意思是:是否将计算得到的值直接覆盖之前的值

例如:x = x+1
即对原值x进行+1操作后得到的值,直接赋值给x
而不是如下找一个中间变量y:

y=x+1
x=y

先将x进行+1操作后赋值给中间变量y,然后将y值赋给x
这样就需要内存存储变量y
因此当inplace=True时:
就是对从上层网络nn.Conv2d中传递下来的tensor直接进行修改,这样能够节省运算内存,不用多存储其他变量。

相关文章
|
机器学习/深度学习 PyTorch 算法框架/工具
pytorch中nn.ReLU()和F.relu()有什么区别?
pytorch中nn.ReLU()和F.relu()有什么区别?
948 0
|
机器学习/深度学习 PyTorch 算法框架/工具
【PyTorch】nn.ReLU()与F.relu()的区别
【PyTorch】nn.ReLU()与F.relu()的区别
287 0
|
PyTorch 算法框架/工具
PyTorch:常见错误 inplace operation
`inplace` 操作是 PyTorch 里面一个比较常见的错误,有的时候会比较好发现,但是有的时候同样类似的报错,会比较不好发现。
521 0
|
1月前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
92 1
|
5月前
|
机器学习/深度学习 PyTorch API
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
747 21
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
|
17天前
|
边缘计算 人工智能 PyTorch
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。
|
1月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
78 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
2月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.0性能优化实战:4种常见代码错误严重拖慢模型
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
169 9
|
7月前
|
机器学习/深度学习 JavaScript PyTorch
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
517 7
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体

推荐镜像

更多