通过HashSet存储自定义对象
创建Users对象
public class Users { private String username; private int userage; public Users(String username, int userage) { this.username = username; this.userage = userage; } public Users() { } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Users users = (Users) o; if (userage != users.userage) return false; return username != null ? username.equals(users.username) : users.username == null; } @Override public int hashCode() { int result = username != null ? username.hashCode() : 0; result = 31 * result + userage; return result; } public String getUsername() { return username; } public void setUsername(String username) { this.username = username; } public int getUserage() { return userage; } public void setUserage(int userage) { this.userage = userage; } @Override public String toString() { return "Users{" + "username='" + username + '\'' + ", userage=" + userage + '}'; } }
在HashSet中存储Users对象
public class HashSetTest2 { public static void main(String[] args) { //实例化HashSet Set<Users> set = new HashSet<>(); Users u = new Users("oldlu",18); Users u1 = new Users("oldlu",18); set.add(u); set.add(u1); System.out.println(u.hashCode()); System.out.println(u1.hashCode()); for(Users users:set){ System.out.println(users); } } }
HashSet底层源码分析
成员变量
private transient HashMap<E,Object> map; // Dummy value to associate with an Object in the backing Map private static final Object PRESENT = new Object();
添加元素
/** * Adds the specified element to this set if it is not already present. * More formally, adds the specified element <tt>e</tt> to this set if * this set contains no element <tt>e2</tt> such that * <tt>(e==null ? e2==null : e.equals(e2)) </tt>. * If this set already contains the element, the call leaves the set * unchanged and returns <tt>false</tt>. * * @param e element to be added to this set * @return <tt>true</tt> if this set did not already contain the specified * element */ public boolean add(E e) { return map.put(e, PRESENT)==null; }
TreeSet容器的使用
TreeSet实现了Set接口,它是一个可以对元素进行排序的容器。底 层实际是用TreeMap实现的,内部维持了一个简化版的TreeMap, 通过key来存储元素。 TreeSet内部需要对存储的元素进行排序,因 此,我们需要给定排序规则。
排序规则实现方式:
1、通过元素自身实现比较规则。
2、通过比较器指定比较规则。
public class TreeSetTest { public static void main(String[] args) { //实例化TreeSet Set<String> set = new TreeSet<>(); //添加元素 set.add("c"); set.add("a"); set.add("d"); set.add("b"); set.add("a"); //获取元素 for(String str :set){ System.out.println(str); } } }
通过元素自身实现比较规则
在元素自身实现比较规则时,需要实现Comparable接口中的 compareTo方法,该方法中用来定义比较规则。TreeSet通过调用 该方法来完成对元素的排序处理。
创建Users类
public class Users implements Comparable<Users>{ private String username; private int userage; public Users(String username, intuserage) { this.username = username; this.userage = userage; } public Users() { } @Override public boolean equals(Object o) { System.out.println("equals..."); if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Users users = (Users) o; if (userage != users.userage) return false; return username != null ? username.equals(users.username) : users.username == null; } @Override public int hashCode() { int result = username != null ? username.hashCode() : 0; result = 31 * result + userage; return result; } public String getUsername() { return username; } public void setUsername(String username) { this.username = username; } public int getUserage() { return userage; } public void setUserage(int userage) { this.userage = userage; } @Override public String toString() { return "Users{" + "username='" + username + '\'' + ", userage=" + userage + '}'; } //定义比较规则 //正数:大,负数:小,0:相等 @Override public int compareTo(Users o) { if(this.userage > o.getUserage()){ return 1; } if(this.userage == o.getUserage()){ return this.username.compareTo(o.getUsername()); } return -1; } }
Set<Users> set1 = new TreeSet<>(); Users u = new Users("oldlu",18); Users u1 = new Users("admin",22); Users u2 = new Users("sxt",22); set1.add(u); set1.add(u1); set1.add(u2); for(Users users:set1){ System.out.println(users); }
通过比较器实现比较规则
通过比较器定义比较规则时,我们需要单独创建一个比较器,比较 器需要实现Comparator接口中的compare方法来定义比较规则。 在实例化TreeSet时将比较器对象交给TreeSet来完成元素的排序处 理。此时元素自身就不需要实现比较规则了。
创建Student类
public class Student { private String name; private int age; public Student(String name, int age) { this.name = name; this.age = age; } public Student() { } @Override public String toString() { return "Student{" + "name='" + name + '\'' + ", age=" + age + '}'; } public String getName() { return name; } public void setName(String name) { this.name = name; } public int getAge() { return age; } public void setAge(int age) { this.age = age; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Student student = (Student) o; if (age != student.age) return false; return name != null ? name.equals(student.name) : student.name == null; } @Override public int hashCode() { int result = name != null ? name.hashCode() : 0; result = 31 * result + age; return result; } }
创建比较器
public class StudentComparator implements Comparator<Student> { //定义比较规则 @Override public int compare(Student o1, Student o2) { if(o1.getAge() > o2.getAge()){ return 1; } if(o1.getAge() == o2.getAge()){ return o1.getName().compareTo(o2.getName()); } return -1; } }
public class TreeSetTest3 { public static void main(String[] args) { //创建TreeSet容器,并给定比较器对象 Set<Student> set = new TreeSet<>(new StudentComparator()); Student s = new Student("oldlu",18); Student s1 = new Student("admin",22); Student s2 = new Student("sxt",22); set.add(s); set.add(s1); set.add(s2); for(Student student:set){ System.out.println(student); } } }
TreeSet底层源码分析
成员变量
/** * The backing map. */ private transient NavigableMap<E,Object> m; // Dummy value to associate with an Object in the backing Map private static final Object PRESENT = new Object();
构造方法
public TreeSet() { this(new TreeMap<E,Object>()); }
添加元素
/** * Adds the specified element to this set if it is not already present. * More formally, adds the specified element <tt>e</tt> to this set if * this set contains no element <tt>e2</tt> such that * <tt>(e==null ? e2==null : e.equals(e2))</tt>. * If this set already contains the element, the call leaves the set * unchanged and returns <tt>false</tt>. * * @param e element to be added to this set * @return <tt>true</tt> if this set did not already contain the specified * element */ public boolean add(E e) { return map.put(e, PRESENT)==null; }
单例集合使用案例
需求: 产生1-10之间的随机数([1,10]闭区间),将不重复的10个随机数放到 容器中。
使用List类型容器实现
public class ListDemo { public static void main(String[] args) { List<Integer> list = new ArrayList<>(); while(true){ //产生随机数 int num = (int) (Math.random()*10+1); //判断当前元素在容器中是否存在 if(!list.contains(num)){ list.add(num); } //结束循环 if(list.size() == 10){ break; } } for(Integer i:list){ System.out.println(i); } } }
使用Set类型容器实现
public class SetDemo { public static void main(String[] args) { Set<Integer> set = new HashSet<>(); while(true){ int num = (int)(Math.random()*10+1); //将元素添加容器中,由于Set类型容器是、不允许有重复元素的,所以不需要判断。 set.add(num); //结束循环 if(set.size() == 10){ break; } } for(Integer i:set){ System.out.println(i); } } }
双例集合
Map接口介绍
Map接口定义了双例集合的存储特征,它并不是Collection接口的 子接口。双例集合的存储特征是以key与value结构为单位进行存 储。体现的是数学中的函数 y=f(x)感念。
Map与Collecton的区别:
1、Collection中的容器,元素是孤立存在的(理解为单身),向集 合中存储元素采用一个个元素的方式存储。
2、Map中的容器,元素是成对存在的(理解为现代社会的夫妻)。每 个元素由键与值两部分组成,通过键可以找对所对应的值。3、Collection中的容器称为单列集合,Map中的容器称为双列集 合。4、Map中的集合不能包含重复的键,值可以重复;每个键只能对应 一个值。5、Map中常用的容器为HashMap,TreeMap等。
Map接口中常用的方法表
HashMap容器的使用
HashMap采用哈希算法实现,是Map接口最常用的实现类。 由于 底层采用了哈希表存储数据,我们要求键不能重复,如果发生重 复,新的键值对会替换旧的键值对。 HashMap在查找、删除、修 改方面都有非常高的效率。
public class HashMapTest { public static void main(String[] args) { //实例化HashMap容器 Map<String,String> map = new HashMap<>(); //添加元素 map.put("a","A"); map.put("b","B"); map.put("c","C"); map.put("a","D"); //获取容器中元素数量 int size = map.size(); System.out.println(size); System.out.println("---------------"); //获取元素 //方式一 String v = map.get("a"); System.out.println(v); System.out.println("---------------"); //方式二 Set<String> keys = map.keySet(); for(String key:keys){ String v1 = map.get(key); System.out.println(key+" ----"+v1); } System.out.println("-------------------"); //方式三 Set<Map.Entry<String,String>> entrySet = map.entrySet(); for(Map.Entry<String,String> entry:entrySet){ String key = entry.getKey(); String v2 = entry.getValue(); System.out.println(key+" ---------- "+v2); } System.out.println("--------------------"); //Map容器的并集操作 Map<String,String> map2 = new HashMap<>(); map2.put("f","F"); map2.put("c","CC"); map.putAll(map2); Set<String> keys2 = map.keySet(); for(String key:keys2){ System.out.println("key: "+key+" Value: "+map.get(key)); } System.out.println("---------------"); //删除元素 String v3 = map.remove("a"); System.out.println(v3); Set<String> keys3 = map.keySet(); for(String key:keys3){ System.out.println("key: "+key+" Value: "+map.get(key)); } System.out.println("-------------------"); //判断Key是否存在 boolean b = map.containsKey("b"); System.out.println(b); //判断Value是否存在 boolean cc = map.containsValue("CC"); System.out.println(cc); } }
HashTable类和HashMap用法几乎一样,底层实现几乎一样,只不 过HashTable的方法添加了synchronized关键字确保线程同步检 查,效率较低。
HashMap与HashTable的区别
1 HashMap: 线程不安全,效率高。允许key或value为null
2 HashTable: 线程安全,效率低。不允许key或value为null
HashMap的底层源码分析
底层存储介绍
HashMap底层实现采用了哈希表,这是一种非常重要的数据结构。 对于我们以后理解很多技术都非常有帮助。 数据结构中由数组和链表来实现对数据的存储,他们各有特点。
(1) 数组:占用空间连续。 寻址容易,查询速度快。但是,增加和 删除效率非常低。(2) 链表:占用空间不连续。 寻址困难,查询速度慢。但是,增加 和删除效率非常高。 那么,我们能不能结合数组和链表的优点(即查询快,增删效率也 高)呢? 答案就是“哈希表”。 哈希表的本质就是“数组+链表”。
Oldlu建议
对于本章中频繁出现的“底层实现”讲解,建议学有余力的童鞋将 它搞通。刚入门的童鞋如果觉得有难度,可以暂时跳过。入门 期间,掌握如何使用即可,底层原理是扎实内功,便于大家应 对一些大型企业的笔试面试。
HashMap中的成员变量
/** * The default initial capacity - MUST be a power of two. */ static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<30. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load factor used when none specified in constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The bin count threshold for using a tree rather than list for a * bin. Bins are converted to trees when adding an element to a * bin with at least this many nodes. The value must be greater * than 2 and should be at least 8 to mesh with assumptions in * tree removal about conversion back to plain bins upon * shrinkage. */ static final int TREEIFY_THRESHOLD = 8; /** * The bin count threshold for untreeifying a (split) bin during a * resize operation. Should be less than TREEIFY_THRESHOLD, and at * most 6 to mesh with shrinkage detection under removal. */ static final int UNTREEIFY_THRESHOLD = 6; /** * The smallest table capacity for which bins may be treeified. * (Otherwise the table is resized if too many nodes in a bin.) * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts * between resizing and treeification thresholds. */ static final int MIN_TREEIFY_CAPACITY = 64; /** * The number of key-value mappings contained in this map. */ transient int size; /** * The table, initialized on first use, and resized as * necessary. When allocated, length is always a power of two. * (We also tolerate length zero in some operations to allow * bootstrapping mechanics that are currently not needed.) */ transient Node<K,V>[] table;
HashMap中存储元素的节点类型
Node类
static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; V value; Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } }
TreeNode类
/** * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn * extends Node) so can be used as extension of either regular or * linked node. */ static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> { TreeNode<K,V> parent; // red-black tree links TreeNode<K,V> left; TreeNode<K,V> right; TreeNode<K,V> prev; // needed to unlink next upon deletion boolean red; TreeNode(int hash, K key, V val, Node<K,V> next) { super(hash, key, val, next); } /** * Returns root of tree containing thisnode. */ final TreeNode<K,V> root() { for (TreeNode<K,V> r = this, p;;) { if ((p = r.parent) == null) return r; r = p; } }
它们的继承关系
HashMap中的数组初始化
在JDK1.8的HashMap中对于数组的初始化采用的是延迟初始化方 式。通过resize方法实现初始化处理。resize方法既实现数组初始 化,也实现数组扩容处理。
/** * Initializes or doubles table size. If null, allocates in * accord with initial capacity target held in field threshold. * Otherwise, because we are using power-oftwo expansion, the * elements from each bin must either stay at same index, or move * with a power of two offset in the new table. * * @return the table */ final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initialthreshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V> [])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null,loTail = null; Node<K,V> hiHead = null,hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail ==null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
HashMap中计算Hash值
1 获得key对象的hashcode
首先调用key对象的hashcode()方法,获得key的hashcode值。
2 根据hashcode计算出hash值(要求在[0, 数组长度-1]区 间)hashcode是一个整数,我们需要将它转化成[0, 数组长度-1] 的范围。我们要求转化后的hash值尽量均匀地分布在[0,数组长 度-1]这个区间,减少“hash冲突”
2.1 一种极端简单和低下的算法是: hash值 = hashcode/hashcode; 也就是说,hash值总是1。意味着,键值对对象都会存储到 数组索引1位置,这样就形成一个非常长的链表。相当于每存 储一个对象都会发生“hash冲突”,HashMap也退化成了一个 “链表”。 2.2 一种简单和常用的算法是(相除取余算法): hash值 = hashcode%数组长度;这种算法可以让hash值均匀的分布在[0,数组长度-1]的区间。 但是,这种算法由于使用了“除法”,效率低下。JDK后来改进 了算法。首先约定数组长度必须为2的整数幂,这样采用位运 算即可实现取余的效果:hash值 = hashcode&(数组长 度-1)。
/** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for the key, the old * value is replaced. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt>. * (A <tt>null</tt> return can also indicate that the map * previously associated <tt>null</tt> with <tt>key</tt>.) */ public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
/** * Implements Map.put and related methods * * @param hash hash for key * @param key the key * @param value the value to put * @param onlyIfAbsent if true, don't change existing value * @param evict if false, the table is in creation mode. * @return previous value, or null if none */ final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value;afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
HashMap中添加元素
/** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for the key, the old * value is replaced. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt>. * (A <tt>null</tt> return can also indicate that the map * previously associated <tt>null</tt> with <tt>key</tt>.) */ public V put(K key, V value) { return putVal(hash(key), key, value,false, true); }
HashMap中数组扩容
/** * Implements Map.put and related methods * * @param hash hash for key * @param key the key * @param value the value to put * @param onlyIfAbsent if true, don't change existing value * @param evict if false, the table is in creation mode. * @return previous value, or null if none */ final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab,hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
/** * Initializes or doubles table size. If null, allocates in * accord with initial capacity target held in field threshold. * Otherwise, because we are using power-oftwo expansion, the * elements from each bin must either stay at same index, or move * with a power of two offset in the new table. * * @return the table */ final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V> [])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
TreeMap容器的使用
TreeMap和HashMap同样实现了Map接口,所以,对于API的用法 来说是没有区别的。HashMap效率高于TreeMap;TreeMap是可 以对键进行排序的一种容器,在需要对键排序时可选用TreeMap。 TreeMap底层是基于红黑树实现的。
在使用TreeMap时需要给定排序规则:
1、元素自身实现比较规则
2、通过比较器实现比较规则
元素自身实现比较规则
public class Users implements Comparable<Users>{ private String username; private int userage; public Users(String username, int userage) { this.username = username; this.userage = userage; } public Users() { } @Override public boolean equals(Object o) { System.out.println("equals..."); if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Users users = (Users) o; if (userage != users.userage) return false; return username != null ? username.equals(users.username) : users.username == null; } @Override public int hashCode() { int result = username != null ? username.hashCode() : 0; result = 31 * result + userage; return result; } public String getUsername() { return username; } public void setUsername(String username) { this.username = username; } public int getUserage() { return userage; } public void setUserage(int userage) { this.userage = userage; } @Override public String toString() { return "Users{" + "username='" + username + '\'' + ", userage=" + userage + '}'; } //定义比较规则 //正数:大,负数:小,0:相等 @Override public int compareTo(Users o) { if(this.userage < o.getUserage()){ return 1; } if(this.userage == o.getUserage()){ return this.username.compareTo(o.getUsername()); } return -1; } }
public class TreeMapTest { public static void main(String[] args) { //实例化TreeMap Map<Users,String> map = new TreeMap<>(); Users u1 = new Users("oldlu",18); Users u2 = new Users("admin",22); Users u3 = new Users("sxt",22); map.put(u1,"oldlu"); map.put(u2,"admin"); map.put(u3,"sxt"); Set<Users> keys = map.keySet(); for(Users key :keys){ System.out.println(key+" --------- "+map.get(key)); } } }
通过比较器实现比较规则
public class Student { private String name; private int age; public Student(String name, int age) { this.name = name; this.age = age; } public Student() { } @Override public String toString() { return "Student{" + "name='" + name + '\'' + ", age=" + age + '}'; } public String getName() { return name; } public void setName(String name) { this.name = name; } public int getAge() { return age; } public void setAge(int age) { this.age = age; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Student student = (Student) o; if (age != student.age) return false; return name != null ? name.equals(student.name) : student.name == null; } @Override public int hashCode() { int result = name != null ? name.hashCode() : 0; result = 31 * result + age; return result; } }
public class StudentComparator implements Comparator<Student> { //定义比较规则 @Override public int compare(Student o1, Student o2) { if(o1.getAge() > o2.getAge()){ return 1; } if(o1.getAge() == o2.getAge()){ return o1.getName().compareTo(o2.getName()); } return -1; } }
public class TreeMapTest { public static void main(String[] args) { Map<Student,String> treeMap = new TreeMap<>(new StudentComparator()); Student s1 = new Student("oldlu",18); Student s2 = new Student("admin",22); Student s3 = new Student("sxt",22); treeMap.put(s1,"oldlu"); treeMap.put(s2,"admin"); treeMap.put(s3,"sxt"); Set<Student> keys1 = treeMap.keySet(); for(Student key :keys1){ System.out.println(key+" ----"+treeMap.get(key)); } } }
TreeMap的底层源码分析
TreeMap是红黑二叉树的典型实现。我们打开TreeMap的源码,发 现里面有一行核心代码:
private transient Entry<K,V> root = null;
root用来存储整个树的根节点。我们继续跟踪Entry(是TreeMap的 内部类)的代码:
可以看到里面存储了本身数据、左节点、右节点、父节点、以及节 点颜色。 TreeMap的put()/remove()方法大量使用了红黑树的理 论。在本节课中,不再展开。需要了解更深入的,可以参考专门的 数据结构书籍。 TreeMap和HashMap实现了同样的接口Map,因此,用法对于调 用者来说没有区别。HashMap效率高于TreeMap;在需要排序的 Map时才选用TreeMap。
Iterator接口
Iterator迭代器接口介绍
Collection接口继承了Iterable接口,在该接口中包含一个名为 iterator的抽象方法,所有实现了Collection接口的容器类对该方法 做了具体实现。iterator方法会返回一个Iterator接口类型的迭代器 对象,在该对象中包含了三个方法用于实现对单例容器的迭代处 理。
Iterator对象的工作原理:
Iterator接口定义了如下方法:
1 boolean hasNext(); //判断游标当前位置的下一个位置是否还有元素没有被遍历;
2 Object next(); //返回游标当前位置的下一个元素并将游标移动到下一个位置;
3 void remove(); //删除游标当前位置的元素,在执行完next后该操作只能执行一次;
Iterator迭代器的使用
迭代List接口类型容器
public class IteratorListTest { public static void main(String[] args) { //实例化容器 List<String> list = new ArrayList<>(); list.add("a"); list.add("b"); list.add("c"); //获取元素 //获取迭代器对象 Iterator<String> iterator = list.iterator(); //方式一:在迭代器中,通过while循环获取元素 while(iterator.hasNext()){ String value = iterator.next(); System.out.println(value); } System.out.println("-------------------------------"); //方法二:在迭代器中,通过for循环获取元素 for(Iterator<String> it = list.iterator();it.hasNext();){ String value = it.next(); System.out.println(value); } } }
迭代Set接口类型容器
public class IteratorSetTest { public static void main(String[] args) { //实例化Set类型的容器 Set<String> set = new HashSet<>(); set.add("a"); set.add("b"); set.add("c"); //方式一:通过while循环 //获取迭代器对象 Iterator<String> iterator = set.iterator(); while(iterator.hasNext()){ String value = iterator.next(); System.out.println(value); } System.out.println("-------------------------"); //方式二:通过for循环 for(Iterator<String> it = set.iterator();it.hasNext();){ String value = it.next(); System.out.println(value); } } }
迭代Map接口类型容器
public class IteratorMapTest { public static void main(String[] args) { //实例化HashMap容器 Map<String, String> map = new HashMap<String, String>(); //添加元素 map.put("a", "A"); map.put("b", "B"); map.put("c", "C"); //遍历Map容器方式一 Set<String> keySet = map.keySet(); for (Iterator<String> it = keySet.iterator(); it.hasNext();){ String key = it.next(); String value = map.get(key); System.out.println(key+" ------------- "+value); } System.out.println("------------------------"); //遍历Map容器方式二 Set<Map.Entry<String, String>> entrySet = map.entrySet(); Iterator<Map.Entry<String, String>> iterator = entrySet.iterator(); while(iterator.hasNext()){ Map.Entry entry = iterator.next(); System.out.println(entry.getKey()+" ------------ "+ entry.getValue()); } } }
在迭代器中删除元素
public class IteratorRemoveTest { public static void main(String[] args) { List<String> list = new ArrayList<>(); list.add("a"); list.add("b"); list.add("c"); list.add("d"); Iterator<String> iterator = list.iterator(); while(iterator.hasNext()){ //不要在一次循环中多次调用next方法。 String value = iterator.next(); iterator.remove(); } System.out.println("----------------"); for(Iterator<String> it = list.iterator(); it.hasNext();){ System.out.println(it.next()); list.add("dddd"); } } }
遍历集合的方法总结
遍历List方法一:普通for循环
for(int i=0;i<list.size();i++){//list为集合的对象名 String temp = (String)list.get(i); System.out.println(temp); }
遍历List方法二:增强for循环(使用泛型!)
for (String temp : list) { System.out.println(temp); }
遍历List方法三:使用Iterator迭代器(1)
for(Iterator iter= list.iterator();iter.hasNext();){ String temp = (String)iter.next(); System.out.println(temp); }
遍历List方法四:使用Iterator迭代器(2)
Iterator iter =list.iterator(); while(iter.hasNext()){ Object obj = iter.next(); iter.remove();//如果要遍历时,删除集合中的元素,建议使用这种方式! System.out.println(obj); }
遍历Set方法一:增强for循环
for(String temp:set){ System.out.println(temp); }
遍历Set方法二:使用Iterator迭代器
for(Iterator iter = set.iterator();iter.hasNext();){ String temp = (String)iter.next(); System.out.println(temp); }
遍历Map方法一:根据key获取value
Map<Integer, Man> maps = new HashMap<Integer, Man>(); Set<Integer> keySet = maps.keySet(); for(Integer id : keySet){ System.out.println(maps.get(id).name); }
遍历Map方法二:使用entrySet
Set<Map.Entry<Integer, Man>> ss = maps.entrySet(); for (Iterator<Map.Entry<Integer, Man>> iterator = ss.iterator(); iterator.hasNext();) { Map.Entry e = iterator.next(); System.out.println(e.getKey()+"-- "+e.getValue()); }
Collections工具类
类 java.util.Collections 提供了对Set、List、Map进行排序、填充、 查找元素的辅助方法。
Collections工具类的常用方法
public class CollectionsTest { public static void main(String[] args) { List<String> list = new ArrayList<>(); list.add("c"); list.add("b"); list.add("a"); //对元素排序 Collections.sort(list); for(String str:list){ System.out.println(str); } System.out.println("-------------------"); List<Users> list2 = new ArrayList<>(); Users u = new Users("oldlu",18); Users u2 = new Users("sxt",22); Users u3 = new Users("admin",22); list2.add(u); list2.add(u2); list2.add(u3); //对元素排序 Collections.sort(list2); for(Users user:list2){ System.out.println(user); } System.out.println("-------------------"); List<Student> list3 = new ArrayList<>(); Student s = new Student("oldlu",18); Student s1 = new Student("sxt",20); Student s2 = new Student("admin",20); list3.add(s); list3.add(s1); list3.add(s2); Collections.sort(list3,new StudentComparator()); for(Student student:list3){ System.out.println(student); } System.out.println("-------------------"); List<String> list4 = new ArrayList<>(); list4.add("a"); list4.add("b"); list4.add("c"); list4.add("d"); //洗牌 Collections.shuffle(list4); for(String str:list4){ System.out.println(str); } } }