反向传播算法详解和Python代码实现

简介: 反向传播算法详解和Python代码实现

反向传播算法是训练神经网络的经典算法,是深度学习的最重要的基础,适合于多层神经元网络的一种学习算法,它建立在梯度下降法的基础上,通过迭代的方法求出目标损失函数(loss function)的近似最小值。

本文通过理论和代码相结合的方式详细讲述了反向传播算法的原理和实现。


作者:Great Learning Team

deephub.ai翻译组译

  1. 神经网络
  2. 什么是反向传播?
  3. 反向传播是如何工作的?
  4. 损失函数
  5. 为什么我们需要反向传播?
  6. 前馈网络
  7. 反向传播的类型
  8. 案例研究


image.png

在典型的编程中,我们输入数据,执行处理逻辑并接收输出。 如果输出数据可以某种方式影响处理逻辑怎么办? 那就是反向传播算法。 它对以前的模块产生积极影响,以提高准确性和效率。

让我们来深入研究一下。

神经网络(Neural network)

神经网络是连接单元的集合。每个连接都有一个与其相关联的权重。该系统有助于建立基于海量数据集的预测模型。它像人类的神经系统一样工作,有助于理解图像,像人类一样学习,合成语音等等。

什么是反向传播(What is backpropagation?)

我们可以将反向传播算法定义为在已知分类的情况下,为给定的输入模式训练某些给定的前馈神经网络的算法。当示例集的每一段都显示给网络时,网络将查看其对示例输入模式的输出反应。之后,测量输出响应与期望输出与误差值的比较。之后,我们根据测量的误差值调整连接权重。

在深入研究反向传播之前,我们应该知道是谁引入了这个概念以及何时引入。它最早出现在20世纪60年代,30年后由大卫·鲁梅尔哈特、杰弗里·辛顿和罗纳德·威廉姆斯在1986年的著名论文中推广。在这篇论文中,他们谈到了各种神经网络。今天,反向传播做得很好。神经网络训练是通过反向传播实现的。通过这种方法,我们根据前一次运行获得的错误率对神经网络的权值进行微调。正确地采用这种方法可以降低错误率,提高模型的可靠性。利用反向传播训练链式法则的神经网络。简单地说,每次前馈通过网络后,该算法根据权值和偏差进行后向传递,调整模型的参数。典型的监督学习算法试图找到一个将输入数据映射到正确输出的函数。反向传播与多层神经网络一起工作,学习输入到输出映射的内部表示。

反向传播是如何工作的?(How does backpropagation work?)

让我们看看反向传播是如何工作的。它有四层:输入层、隐藏层、隐藏层II和最终输出层。

所以,主要的三层是:

1.输入层

2.隐藏层

3.输出层

每一层都有自己的工作方式和响应的方式,这样我们就可以获得所需的结果并将这些情况与我们的状况相关联。让我们讨论有助于总结此算法所需的其他细节。

image.png

这张图总结了反向传播方法的机能。

1.输入层接收x

2.使用权重w对输入进行建模

3.每个隐藏层计算输出,数据在输出层准备就绪

4.实际输出和期望输出之间的差异称为误差

5.返回隐藏层并调整权重,以便在以后的运行中减少此错误

这个过程一直重复,直到我们得到所需的输出。训练阶段在监督下完成。一旦模型稳定下来,就可以用于生产。

损失函数(Loss function)

一个或多个变量被映射到实数,这些实数表示与这些变量值相关的某个数值。为了进行反向传播,损失函数计算网络输出与其可能输出之间的差值。

为什么我们需要反向传播?(Why do we need backpropagation?)

反向传播有许多优点,下面列出一些重要的优点:

•反向传播快速、简单且易于实现

•没有要调整的参数

•不需要网络的先验知识,因此成为一种灵活的方法

•这种方法在大多数情况下都很有效

•模型不需要学习函数的特性

前馈网络(Feed forward network)

前馈网络也称为MLN,即多层网络。之所以称为前馈,是因为数据仅在NN(神经网络)中通过输入节点,隐藏层并最终到达输出节点。它是最简单的人工神经网络。

反向传播的类型(Types of backpropagation)

有两种类型的反向传播网络。

•静态反向传播(Static backpropagation)

•循环反向传播(Recurrent backpropagation)

  1. 静态反向传播(Static backpropagation)

在这个网络中,静态输入的映射生成静态输出。像光学字符识别这样的静态分类问题将是一个适合于静态反向传播的领域。

  1. 循环反向传播(Recurrent backpropagation)

反复进行反向传播,直到达到某个阈值为止。在到达阈值之后,将计算误差并向后传播。

这两种方法的区别在于,静态反向传播与静态映射一样快。

案例研究(Case Study)

让我们使用反向传播进行案例研究。为此,我们将使用Iris数据(鸢尾花卉数据集),该数据包含诸如萼片和花瓣的长度和宽度之类的特征。在这些帮助下,我们需要确定植物的种类。

为此,我们将构建一个多层神经网络,并使用sigmoid函数,因为它是一个分类问题。

让我们看一下所需的库和数据。

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

为了忽略警告,我们将导入另一个名为warnings的库。

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

接着让我们读取数据。

iris = pd.read_csv("iris.csv")
iris.head()

image.png

现在我们将把类标记为0、1和2。

iris. replace (, , inplace=True)

我们现在将定义函数,它将执行以下操作。

1.对输出执行独热编码(one hot encoding)。

2.执行sigmoid函数

3.标准化特征

对于独热编码,我们定义以下函数。

defto_one_hot(Y):
    n_col = np.amax(Y) + 1
    binarized = np.zeros((len(Y), n_col))
    for i in range(len(Y)):
        binarized ] = 1.return binarized

现在我们来定义一个sigmoid函数

defsigmoid_func(x):return1/(1+np.exp(-x))
defsigmoid_derivative(x):return sigmoid_func(x)*(1 – sigmoid_func(x))

现在我们将定义一个用于标准化的函数。

defnormalize(X, axis=-1, order=2):
    l2 = np. atleast_1d (np.linalg.norm(X, order, axis))
    l2 = 1return X / np.expand_dims(l2, axis)

现在我们将对特征进行规范化,并对输出应用独热编码。

x = pd.DataFrame(iris, columns=columns)
x = normalize(x.as_matrix())
y = pd.DataFrame(iris, columns=columns)
y = y.as_matrix()
y = y.flatten()
y = to_one_hot(y)

现在是时候应用反向传播了。为此,我们需要定义权重和学习率。让我们这么做吧。但在那之前,我们需要把数据分开进行训练和测试。

#Split data to training and validation data(将数据拆分为训练和验证数据)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33)
#Weights
w0 = 2*np.random.random((4, 5)) - 1#forinput - 4 inputs, 3 outputs
w1 = 2*np.random.random((5, 3)) - 1#for layer 1 - 5 inputs, 3 outputs
#learning rate
n = 0.1

我们将为错误设置一个列表,并通过可视化查看训练中的更改如何减少错误。

errors = []

让我们执行前馈和反向传播网络。对于反向传播,我们将使用梯度下降算法。

for i in range (100000):
#Feed forward network
layer0 = X_train
layer1 = sigmoid_func(np.dot(layer0, w0))
layer2 = sigmoid_func(np.dot(layer1, w1))
Back propagation using gradient descent
layer2_error = y_train - layer2
layer2_delta = layer2_error * sigmoid_derivative(layer2)
layer1_error = layer2_delta.dot (w1.T)
layer1_delta = layer1_error * sigmoid_derivative(layer1)
w1 += layer1.T.dot(layer2_delta) * n
w0 += layer0.T.dot(layer1_delta) * n
error = np.mean(np.abs(layer2_error))
errors.append(error)

准确率将通过从训练数据中减去误差来收集和显示

accuracy_training = (1 - error) * 100

现在让我们直观地看一下如何通过减少误差来提高准确度。(可视化)

plt.plot(errors)
plt.xlabel('Training')
plt.ylabel('Error')
plt.show()


现在让我们查看一下准确率。

print ("Training Accuracy of the model " + str (round(accuracy_training,2)) + "%")

Output: Training Accuracy of the model 99.04%

我们的训练模型表现很好。现在让我们看看验证的准确性。

#Validate
layer0 = X_test
layer1 = sigmoid_func(np.dot(layer0, w0))
layer2 = sigmoid_func(np.dot(layer1, w1))
layer2_error = y_test - layer2
error = np.mean(np.abs(layer2_error))
accuracy_validation = (1 - error) * 100print ("Validation Accuracy of the model "+ str(round(accuracy_validation,2)) + "%")

Output: Validation Accuracy 92.86%

这个性能符合预期。

应遵循的最佳实践准则(Best practices to follow)

下面讨论一些获得好模型的方法:

•如果约束非常少,则系统可能不起作用

•过度训练,过多的约束会导致过程缓慢

•只关注少数方面会导致偏见

反向传播的缺点(Disadvantages of backpropagation)

•输入数据是整体性能的关键

•有噪声的数据会导致不准确的结果

•基于矩阵的方法优于小批量方法(mini-batch)

综上所述,神经网络是具有输入和输出机制的连接单元的集合,每个连接都有相关联的权值。反向传播是"误差的反向传播",对训练神经网络很有用。它快速、易于实现且简单。反向传播对于处理语音或图像识别等易出错项目的深度神经网络非常有益。

目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
23 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
29天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
257 55
|
1月前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
43 6
|
18天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
110 66
|
13天前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
54 33
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
176 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
14天前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
37 10
|
14天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
19天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
47 5
|
1月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
73 8