python数据分析-整个学习流程

简介: python数据分析-整个学习流程

一、二是环境的搭建

三、四、五是学习的内容

若想用python对数据进行分析:按照三、四、五的学习过程。


一、环境配置


conda环境


二、编辑器


Pycharm
Jupyter notebook

三、python语法


基本语法

注释
  行与缩进 
  多行语句
  变量
  函数
  模块导入
  运算符


Python基本数据类型

数值型
  字符串
  布尔型
  None(空值对象)
  列表
  元组
  字典
  集合
  流程控制语句:if条件语句、for循环语句、while循环语句
  文件操作、open()、with open() 
  as:别名
  自定义
  自定义类
  类概念
  类方法
  类属性
  实例化对象
  自定义函数
  函数传参
  形式参数
  实际参数


四、数据分析常用库


1.Numpy

Numpy数据类型
Numpy数组定义和创建
数组的属性
数组的索引切片
数组操作
数组运算


2.Pandas

Pandas核心数据结构
Series
DataFrame
Pandas文件读写
Pandas数据清洗
时间序列
Pandas可视化


3.Matplotlib

基本图形认知
创建画布
创建子图
添加绘图主体部分
保存显示图形
图形美化设置


五、Sklearn(机器学习)

机器学习介绍
机器学习一般流程
机器学习算法介绍
有监督学习
无监督学习
半监督学习
强化学习
特征工程
算法
相关文章
|
13天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
40 0
|
8天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
19 2
|
14天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
29 2
|
19天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
22 2
|
25天前
|
人工智能 IDE 测试技术
使用通义灵码提升Python开发效率:从熟悉代码到实现需求的全流程体验
作为一名Python开发者,我最近开始使用通义灵码作为开发辅助工具。它显著提高了我的工作效率,特别是在理解和修改复杂代码逻辑方面。通过AI编码助手,我能够在短时间内快速上手新项目,实现新需求,并进行代码优化,整体效率提升了60%以上。通义灵码不仅加快了代码生成速度,还增强了代码的健壮性和稳定性。
|
5天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
5天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
7天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
8天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
28天前
|
机器学习/深度学习 人工智能 架构师
Python学习圣经:从0到1,精通Python使用
尼恩架构团队的大模型《LLM大模型学习圣经》是一个系统化的学习系列,初步规划包括以下内容: 1. **《Python学习圣经:从0到1精通Python,打好AI基础》** 2. **《LLM大模型学习圣经:从0到1吃透Transformer技术底座》**
Python学习圣经:从0到1,精通Python使用