【算法题解】 Day31 排序

简介: 今天的算法是 「排序」 相关,“算法题解系列文章旨在精选重点与易错的算法题,总结常见的算法思路与可能出现的错误,以实战习题的形式理解算法,使用算法。”

剑指 Offer 45. 把数组排成最小的数

题目

剑指 Offer 45. 把数组排成最小的数 难度:medium

输入一个非负整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个。

示例 1:

输入: [10,2]
输出: "102"
AI 代码解读

示例 2:

输入: [3,30,34,5,9]
输出: "3033459"
AI 代码解读

提示:

  • 0 < nums.length <= 100

 

方法一:排序

思路

此题求拼接起来的最小数字,本质上是一个排序问题。设数组 numsnums 中任意两数字的字符串为 xx 和 yy ,则规定 排序判断规则 为:

  • 若拼接字符串 x+y>y+x ,则 x>y
  • 反之,若 x+y<y+x ,则 x<y

根据以上规则,套用任何排序方法对 nums 执行排序即可。

image.png

  1. 初始化:  字符串列表 strs ,保存各数字的字符串格式;
  2. 列表排序:  应用以上 “排序判断规则” ,对 strs 执行排序;
  3. 返回值:  拼接 strs 中的所有字符串,并返回。

 

解题

Python:

class Solution:
    def minNumber(self, nums: List[int]) -> str:
        def quick_sort(l , r):
            if l >= r: return
            i, j = l, r
            while i < j:
                while strs[j] + strs[l] >= strs[l] + strs[j] and i < j: j -= 1
                while strs[i] + strs[l] <= strs[l] + strs[i] and i < j: i += 1
                strs[i], strs[j] = strs[j], strs[i]
            strs[i], strs[l] = strs[l], strs[i]
            quick_sort(l, i - 1)
            quick_sort(i + 1, r)
        
        strs = [str(num) for num in nums]
        quick_sort(0, len(strs) - 1)
        return ''.join(strs)
AI 代码解读

Java:

class Solution {
    public String minNumber(int[] nums) {
        String[] strs = new String[nums.length];
        for(int i = 0; i < nums.length; i++)
            strs[i] = String.valueOf(nums[i]);
        quickSort(strs, 0, strs.length - 1);
        StringBuilder res = new StringBuilder();
        for(String s : strs)
            res.append(s);
        return res.toString();
    }
    void quickSort(String[] strs, int l, int r) {
        if(l >= r) return;
        int i = l, j = r;
        String tmp = strs[i];
        while(i < j) {
            while((strs[j] + strs[l]).compareTo(strs[l] + strs[j]) >= 0 && i < j) j--;
            while((strs[i] + strs[l]).compareTo(strs[l] + strs[i]) <= 0 && i < j) i++;
            tmp = strs[i];
            strs[i] = strs[j];
            strs[j] = tmp;
        }
        strs[i] = strs[l];
        strs[l] = tmp;
        quickSort(strs, l, i - 1);
        quickSort(strs, i + 1, r);
    }
}
AI 代码解读

 

题目名字

题目

剑指 Offer 61. 扑克牌中的顺子 难度:easy

若干副扑克牌中随机抽 5 张牌,判断是不是一个顺子,即这5张牌是不是连续的。2~10为数字本身,A为1,J为11,Q为12,K为13,而大、小王为 0 ,可以看成任意数字。A 不能视为 14。

示例 1:

输入: [1,2,3,4,5]
输出: True
AI 代码解读

示例 2:

输入: [0,0,1,2,5]
输出: True
AI 代码解读

 

方法一:排序

思路

根据题意,此 5 张牌是顺子的 充分条件 如下:

  1. 除大小王外,所有牌 无重复 ;
  2. 设此 5 张牌中最大的牌为 max,最小的牌为 min(大小王除外),则需满足:

maxmin<5

因而,可将问题转化为:此 55 张牌是否满足以上两个条件?

image.png

  • 先对数组执行排序。
  • 判别重复:  排序数组中的相同元素位置相邻,因此可通过遍历数组,判断 nums[i]=nums[i+1] 是否成立来判重。
  • 获取最大 / 最小的牌: 排序后,数组末位元素 nums[4] 为最大牌;元素 nums[joker] 为最小牌,其中 joker 为大小王的数量。

 

解题

Python:

class Solution:
    def isStraight(self, nums: List[int]) -> bool:
        joker = 0
        nums.sort() # 数组排序
        for i in range(4):
            if nums[i] == 0: joker += 1 # 统计大小王数量
            elif nums[i] == nums[i + 1]: return False # 若有重复,提前返回 false
        return nums[4] - nums[joker] < 5 # 最大牌 - 最小牌 < 5 则可构成顺子
AI 代码解读

Java:

class Solution {
    public boolean isStraight(int[] nums) {
        int joker = 0;
        Arrays.sort(nums); // 数组排序
        for(int i = 0; i < 4; i++) {
            if(nums[i] == 0) joker++; // 统计大小王数量
            else if(nums[i] == nums[i + 1]) return false; // 若有重复,提前返回 false
        }
        return nums[4] - nums[joker] < 5; // 最大牌 - 最小牌 < 5 则可构成顺子
    }
}
AI 代码解读

 

后记

📝 上篇精讲: 【算法题解】 Day30 搜索与回溯
💖 我是  𝓼𝓲𝓭𝓲𝓸𝓽,期待你的关注;
👍 创作不易,请多多支持;
🔥 系列专栏: 算法题解
目录
打赏
0
0
0
0
0
分享
相关文章
|
9月前
|
【洛谷 P1223】排队接水(贪心算法+结构体排序)
该问题要求安排n个人的排队顺序以最小化平均等待时间。每个人接水需时Ti,解决方案是让接水时间短的人优先。给定n1000ti106,代码示例使用C++实现,通过排序使时间从小到大排列,然后计算平均等待时间。样例输入为10个人的时间数组,输出为优化后的排队顺序及平均等待时间(291.90)。
76 0
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
7月前
|
【算法】二分查找——在排序数组中查找元素的第一个和最后一个位置
【算法】二分查找——在排序数组中查找元素的第一个和最后一个位置
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
218 7
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
169 8
|
5月前
|
解析排序算法:十大排序方法的工作原理与性能比较
解析排序算法:十大排序方法的工作原理与性能比较
153 9
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
基数排序是一种稳定的排序算法,通过将数字按位数切割并分配到不同的桶中,以空间换时间的方式实现快速排序,但占用内存较大,不适合含有负数的数组。
69 0
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
|
5月前
|
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
54 0
现有一个接口DataOperation定义了排序方法sort(int[])和查找方法search(int[],int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法
该博客文章通过UML类图和Java源码示例,展示了如何使用适配器模式将QuickSort类和BinarySearch类的排序和查找功能适配到DataOperation接口中,实现算法的解耦和复用。
76 1
现有一个接口DataOperation定义了排序方法sort(int[])和查找方法search(int[],int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等