408数据结构学习笔记——树、森林

简介: 408数据结构学习笔记——树、森林

1.树的存储结构

1.1.双亲表示法(顺序存储)

  1. 采用数组存储每个结点,同时为每个结点定义一个指针(伪指针,指示该元素在数组的下标)
  2. data域存放数据,parent域存放其双亲结点的数组下标
  3. 下标0存放根节点,根节点的指针域为-1

022c42ae09434620813edfcb0bf82f61.png

#define MAXSIZE 100
//定义结点
typedef struct PTNode{
    elemtype data;    //存放数据
    int parent;    //伪指针,指向其双亲结点
}PTNode;
typedef struct PTree{
    PTNode nodes[MAXSIZE];    //申明一个足够大的数组,存放树中结点
    int n;    //树中结点个数
}PTree;

优点:查找双亲很方便

缺点:查找孩子需要从头遍历

1.2.孩子表示法(顺序+链式)

该存储方式便于找孩子结点,但是找双亲结点麻烦

//链式存储,存放该结点的每个孩子结点的信息(非孩子结点数据)
typedef struct CTNode{
    int child;    //存放该结点的孩子结点在数组中的下标
    struct CTNode *next;    //指向下一个孩子
}CTNode;
//定义结点,存放结点数据,并且存放该元素的第一个孩子结点
typedef struct CTBox{
    elemtype data;    //存放数据
    CTNode *firstChild;    //指向第一个孩子结点
}CTBox;
//顺序存储
typedef struct CTree{
    CTBox nodes[MAXSIZE];
    int n, r;    //n为结点个数,r为根节点的数组下标
}CTree;

a0f3eedd38d74c778abd8c7a71f8e2ff.png

1.3.孩子兄弟表示法(森林和树的相互转化)

typedef struct CSNode{
    elemtype data;    //存放数据
    struct CSNode *firstChild, *nextsibling;    //第一个孩子和右兄弟指针
}CSNode, *CSTree;

2fbd4427657046448f1dbdb729225e13.png

孩子兄弟表示法的本质就是森林和树的相互转换:

森林和树的转化中,左指针指向的是孩子,右指针指向的是树

2.树和森林的遍历

2.1.树的先根遍历

e7a0b3f4e652443ca3f32be6bdb9267b.png

ABCD→A(BEF)(CG)(DHIJ)→A(B(EK)F)(CG)(DHIJ)

树的先根遍历序列和这棵树对应的二叉树的先序序列相同

2.2.树的后根遍历

BCDA→(EFB)(GC)(HIJD)A→(KEFB)(GC)(HIJD)A

树的后根遍历序列和这棵树对应的二叉树的中序序列相同

2.3.森林的先序遍历

842c50bb6b4a4969b649129681db5197.png

BCD→(BEF)(CG)(DHIJ)→(B(EKL)F)(CG)(D(HM)IJ)

依次对每个树进行先序遍历

2.4.森林的中序遍历

BCD→(EFB)(GC)(HIJD)→((KLE)FB)(GC)((MH)IJD)

依次对每个树进行后根遍历

2.5.树和森林的遍历小结

11c81d88f1754dfba205e5d9b4f2f9cc.png

3.王道课后题

0fb50168af3949c089594232b5f234b0.png

先序遍历

typedef struct TNode{
    struct TNode *firstChild, *nextSilbing;
    elemtype value;
}TNode, *Tree;
int InOrder(Tree T) {
    int count = 0;
    if (!T) return count;
    count++;
    if (T->firstChild) count += InOrder(T->firstChild);
    if (T->nextSilbing) count += InOrder(T->nextSilbing);
    return count;
}

468cc96a1d234066ba1af3d054bd89c8.png

typedef struct ThreadNode{
    struct ThreadNode *firstChild, *nextSibling;
    elemtype data;
}ThreadNode, *ThreadTree;
int GetDepth(ThreadNode T) {
    int ldepth = 0, rdepth = 0;
    if (!T) return 0;
    else {
        if (T->firstChild) ldepth = GetDepth(T->firstChild;
        if (T->nextSibling) rdepth = GetDepth(T->nextSibling);
    }
    return (firstChild > nextSibling ? firstChild : nextSibling) + 1;
}


相关文章
|
算法
数据结构之博弈树搜索(深度优先搜索)
本文介绍了使用深度优先搜索(DFS)算法在二叉树中执行遍历及构建链表的过程。首先定义了二叉树节点`TreeNode`和链表节点`ListNode`的结构体。通过递归函数`dfs`实现了二叉树的深度优先遍历,按预序(根、左、右)输出节点值。接着,通过`buildLinkedList`函数根据DFS遍历的顺序构建了一个单链表,展示了如何将树结构转换为线性结构。最后,讨论了此算法的优点,如实现简单和内存效率高,同时也指出了潜在的内存管理问题,并分析了算法的时间复杂度。
339 0
|
9月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
250 3
 算法系列之数据结构-Huffman树
|
9月前
|
存储 自然语言处理 数据库
【数据结构进阶】AVL树深度剖析 + 实现(附源码)
在深入探讨了AVL树的原理和实现后,我们不难发现,这种数据结构不仅优雅地解决了传统二叉搜索树可能面临的性能退化问题,还通过其独特的平衡机制,确保了在任何情况下都能提供稳定且高效的查找、插入和删除操作。
716 19
|
11月前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
396 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
11月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
334 12
|
11月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
193 10
|
11月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
499 3
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
358 5
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
623 16
|
算法
数据结构之文件系统模拟(树数据结构)
本文介绍了文件系统模拟及其核心概念,包括树状数据结构、节点结构、文件系统类和相关操作。通过构建虚拟环境,模拟文件的创建、删除、移动、搜索等操作,展示了文件系统的基本功能和性能。代码示例演示了这些操作的具体实现,包括文件和目录的创建、移动和删除。文章还讨论了该算法的优势和局限性,如灵活性高但节点移除效率低等问题。
260 0

热门文章

最新文章