机器学习原理与实战 | K-means聚类算法实践

简介: 机器学习原理与实战 | K-means聚类算法实践
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np


1. K-均值算法介绍


from sklearn.datasets import make_blobs
# 产生聚类数据集
X, y = make_blobs(n_samples=200,  # 样本数
                  n_features=2,   # 特征数,决定了x的维度
                  centers=4,      # 产生数据的中心端数量,也就是会分成4类
                  cluster_std=1,  # 数据集的标准差
                  center_box=(-10.0, 10.0),   # 设定的数据边界
                  shuffle=True,  # 洗牌操作
                  random_state=1) # 随机数种子,不同的种子产出不同的样本集合
X.shape, y.shape, np.unique(y)
((200, 2), (200,), array([0, 1, 2, 3]))


查看样本的分类情况


plt.figure(figsize=(6,4), dpi=100)
# plt.xticks(())
# plt.yticks(())
plt.scatter(X[:, 0], X[:, 1], s=10, marker='o');


image.png

使用KMeans模型来拟合,这里设置类别个数为3,并计算出其拟合后的成本。


from sklearn.cluster import KMeans
k = 3
# 构建模型
kmean = KMeans(n_clusters=k)
# 训练
kmean.fit(X)
# 打印出得分信息
print("kmean: k={}, cost={}".format(k, int(kmean.score(X))))
kmean: k=3, cost=-668


KMeans.score()函数计算K-均值算法拟合后的成本,用负数表示,其绝对值越大,说明成本越高。本质上,K-均值算法成本的物理意义为训练样本到其所属的聚类中心的距离平均值,在scikit-learn里,其计算成本的方法略有不同,它是计算训练样本到其所属的聚类中心的距离的总和。


查看聚类算法的拟合效果


labels.shape, centers.shape
((200,), (3, 2))
centers
array([[-1.54465562,  4.4600113 ],
       [-8.03529126, -3.42354791],
       [-7.15632049, -8.05234186]])
# 这里得出聚类后预测的分类
labels = kmean.labels_
# 得到3个聚类的中心点
centers = kmean.cluster_centers_
# 设定格式
markers = ['o', '^', '*']
colors = ['r', 'b', 'y']
plt.figure(figsize=(6,4), dpi=100)
# 不显示坐标数值
plt.xticks(())
plt.yticks(())
# 画样本
for c in range(k):
    # 得到每一类的样本集
    cluster = X[labels == c]
    # 画出散点图
    plt.scatter(cluster[:, 0], cluster[:, 1], marker=markers[c], s=10, c=colors[c])
# 画出中心点
plt.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=0.9, s=300)
# 按数字标点
for i, c in enumerate(centers):
    plt.scatter(c[0], c[1], marker='$%d$' % i, s=50, c=colors[i])

image.png


把画出K-均值聚类结果的代码稍微改造一下,变成一个函数。这个函数会使用K-均值算法来进行聚类拟合,同时会画出按照这个聚类个数拟合后的分类情况


# 给的样本与聚类中心点,画出聚类效果图
def fit_plot_kmean_model(n_clusters, X):
    plt.xticks(())
    plt.yticks(())
    # 使用 k-均值算法进行拟合
    kmean = KMeans(n_clusters=n_clusters)
    kmean.fit_predict(X)
    # 这里得出聚类后预测的分类
    labels = kmean.labels_
    # 得到k个聚类的中心点
    centers = kmean.cluster_centers_
    # 设置格式
    markers = ['o', '^', '*', 's']
    colors = ['r', 'b', 'y', 'k']
    # 计算成本
    score = kmean.score(X)
    plt.title("k={}, score={}".format(n_clusters, (int)(score)))
    # 画样本
    for c in range(n_clusters):
        # 得到每一类的样本集
        cluster = X[labels == c]
        plt.scatter(cluster[:, 0], cluster[:, 1], 
                    marker=markers[c], s=10, c=colors[c])
    # 画出中心点,一个白色的大圆
    plt.scatter(centers[:, 0], centers[:, 1],
                marker='o', c="white", alpha=0.9, s=300)
    # 分别用数字标注k个聚类中心
    for i, c in enumerate(centers):
        plt.scatter(c[0], c[1], marker='$%d$' % i, s=50, c=colors[i])


分别选择K=[2,3,4]这三种不同的聚类个数,来观察一下K-均值算法最终拟合的结果及其成本


from sklearn.cluster import KMeans
n_clusters = [2, 3, 4]
plt.figure(figsize=(10, 3), dpi=144)
for i, c in enumerate(n_clusters):
    plt.subplot(1, 3, i + 1)
    fit_plot_kmean_model(c, X)

image.png


五聚类分析

k = 5
kmean = KMeans(n_clusters=k)
kmean.fit(X)
KMeans(n_clusters=5)
label = kmean.labels_
label.shape
(200,)
np.unique(label)
array([0, 1, 2, 3, 4])
center = kmean.cluster_centers_
center
array([[-7.27296406, -2.30283434],
       [-1.54465562,  4.4600113 ],
       [-7.06537034, -8.16829737],
       [-9.7797588 , -4.13703988],
       [-5.75509335, -3.38975021]])


同样的方法画出样本散点图与中心点


color = ['b','g','r','c','m']
marker = ['*','+','x','o','v']
plt.figure(figsize=(6,4), dpi=100)
for i in range(k):
    plt.scatter(X[label==i][:,0],X[label==i][:,1],c=color[i],marker=marker[i],s=15)
for i in range(k):
    plt.scatter(center[i][0],center[i][1],c=color[i],marker=marker[i],s=150)
plt.scatter(center[:, 0], center[:, 1], marker='o', c='y', alpha=0.9, s=300)
<matplotlib.collections.PathCollection at 0x1d4339e0308>


2. K-均值进行乳癌预测


%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np


加载数据集


from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
X = cancer.data
y = cancer.target
X.shape, y.shape, np.unique(y)
((569, 30), (569,))


数据集切分

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
X_train.shape, X_test.shape, y_train.shape, y_test.shape
((512, 30), (57, 30), (512,), (57,))


使用聚类进行分类

from sklearn.cluster import KMeans
k = 2
kmean = KMeans(n_clusters=k,  # 聚成2类: 有癌症与无癌症
               max_iter=100,  # max_iter=100表示最多进行100次K-均值迭代
               tol=0.01,      # tol=0.1表示中心点移动距离小于0.1时就认为算法已经收敛
               verbose=1,     # verbose=1表示输出迭代过程的详细信息
               n_init=3)      # n_init=3表示进行3遍K-均值运算后求平均值
# 训练
kmean.fit(X_train)
Initialization complete
Iteration 0, inertia 130944259.56339118
Iteration 1, inertia 85520526.48362829
Iteration 2, inertia 71354956.81268741
Iteration 3, inertia 68882163.38363403
Iteration 4, inertia 68649624.79611586
Converged at iteration 4: center shift 138.20126841342588 within tolerance 147.22628661541668.
Initialization complete
Iteration 0, inertia 75269696.14590229
Iteration 1, inertia 68630374.81870994
Converged at iteration 1: strict convergence.
Initialization complete
Iteration 0, inertia 84806412.90554185
Iteration 1, inertia 70867683.66786845
Iteration 2, inertia 68882163.38363403
Iteration 3, inertia 68649624.79611586
Converged at iteration 3: center shift 138.20126841342588 within tolerance 147.22628661541668.
KMeans(max_iter=100, n_clusters=2, n_init=3, tol=0.01, verbose=1)


从输出信息中可以看到,总共进行了3次K-均值聚类分析,kmean.labels_里保存的就是这些文档的类别信息;kmean.inertia_输出总的迭代次数

kmean.labels_.shape, y_train.shape
((512,), (512,))


将聚类预测与真实标签进行对比,这里需要注意的是,聚类算法将样本分成了两类,但是这里是不知道哪一类是患癌症哪一类是没有患癌症的

import pandas as pd
result = pd.DataFrame()
result['cluster_pred'] = kmean.labels_
result['true_label'] = y_train
result['compare'] = (y_train == kmean.labels_)
result.head(10)

image.png


通过前10个效果可以查看,下面统计一下正确与错误的个数,这一步可以通过groupby函数实现

result.groupby("compare").size()
compare
False     74
True     438
dtype: int64


大概计算出来,正确率为85%左右


下面通过测试集来进一步的查看效果

pred = kmean.predict(X_test)
kmean.labels_.shape, pred.shape
((512,), (57,))
result = pd.DataFrame()
result['cluster_pred'] = pred
result['true_label'] = y_test
result['compare'] = (y_test == pred)
result.head(10)

image.png

result.groupby("compare").size()
compare
False     9
True     48
dtype: int64


可以看见测试集的效果同样也是不错的,经过计算测试集的准确率可以达到84%左右,与训练集相似的一个结果


目录
相关文章
|
2月前
|
算法 数据可视化 测试技术
HNSW算法实战:用分层图索引替换k-NN暴力搜索
HNSW是一种高效向量检索算法,通过分层图结构实现近似最近邻的对数时间搜索,显著降低查询延迟。相比暴力搜索,它在保持高召回率的同时,将性能提升数十倍,广泛应用于大规模RAG系统。
166 10
HNSW算法实战:用分层图索引替换k-NN暴力搜索
|
2月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
2月前
|
机器学习/深度学习 缓存 算法
微店关键词搜索接口核心突破:动态权重算法与语义引擎的实战落地
本文详解微店搜索接口从基础匹配到智能推荐的技术进阶路径,涵盖动态权重、语义理解与行为闭环三大创新,助力商家提升搜索转化率、商品曝光与用户留存,实现技术驱动的业绩增长。
|
4月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
980 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
2月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
3月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
3月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
7月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
231 0
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
175 2

热门文章

最新文章