Python 伪随机数:random库的使用

简介: Python 伪随机数:random库。常用函数:seed,random,randint,getrandbits,randrange,uniform,choice,shuffle,sample。用random库计算圆周率值:蒙特卡罗(Monte Carlo)方法。
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
🍎个人主页: 小嗷犬的博客
🍊个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。
🥭本文内容:Python 伪随机数:random库的使用

随机数在计算机应用中十分常见,Python内置的random库主要用于产生各种分布的伪随机数序列。random库采用梅森旋转算法(Mersenne twister)生成伪随机数序列,可用于除随机性要求更高的加解密算法外的大多数工程应用。

1.常用函数

使用 random库主要目的是生成随机数,因此,只需要查阅该库的随机数生成函数,找到符合使用场景的函数使用即可。这个库提供了不同类型的随机数函数,所有函数都是基于最基本的 random.random()函数扩展而来。

random库中的常用函数如下:

函数 描述
seed(a=None) 初始化随机数种子,默认值为当前系统时间
random() 生成一个[0.0,1.0)之间的随机小数
randint(a, b) 生成一个[a,b]之间的整数
getrandbits(k) 生成一个k比特长度的随机整数
randrange(start,stop[, step]) 生成一个[start, stop)之间以step为步数的随机整数
uniform(a, b) 生成一个[a, b]之间的随机小数
choice(seq) 从序列类型(例如:列表)中随机返回一个元素
shuffle(seq) 将序列类型中元素随机排列,返回打乱后的序列
sample(pop,k) 从pop类型中随机选取k个元素,以列表类型返回
生成随机数之前可以通过 seed()函数指定随机数种子,随机种子一般是一个整数,只要种子相同,每次生成的随机数序列也相同。这种情况便于测试和同步数据。

2.random库应用: $\pi$ 的计算

$\pi$(圆周率)是一个无理数,即无限不循环小数。精确求解圆周率$\pi$是几何学、物理学和很多工程学科的关键。

对$\pi$的精确求解曾经是数学历史上一直难以解决的问题之一,因为$\pi$无法用任何精确公式表示,在电子计算机出现以前,$\pi$只能通过一些近似公式的求解得到,直到1948年,人类才以人工计算方式得到$\pi$的808位精确小数。

随着计算机的出现,数学家找到了另类求解π的另类方法:蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法。当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。

应用蒙特卡罗方法求解$\pi$的基本步骤如下:

  • 随机向单位正方形和圆结构,抛洒大量“飞镖”点
  • 计算每个点到圆心的距离从而判断该点在圆内或者圆外
  • 用圆内的点数除以总点数就是$\pi$/4值。

随机点数量越大,越充分覆盖整个图形,计算得到的$\pi$值越精确。实际上,这个方法的思想是利用离散点值表示图形的面积,通过面积比例来求解$\pi$值。

用random库计算圆周率
利用 蒙特卡罗(Monte Carlo)方法 计算圆周率 $\pi$ 的值:

import random

dot = 0
dots = int(input('请输入要抛洒的飞镖数:'))

for i in range(dots):
    x, y = random.random(), random.random()
    r = (x**2 + y**2)**0.5
    if r <= 1:
        dot += 1
pi = 4 * (dot / dots)
print(f'所得圆周率为:{pi}')
随着抛洒飞镖的数量的增加,计算出的圆周率值也更加精确。
目录
相关文章
|
17天前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
20天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
51 0
|
6天前
|
XML 存储 数据库
Python中的xmltodict库
xmltodict是Python中用于处理XML数据的强大库,可将XML数据与Python字典相互转换,适用于Web服务、配置文件读取及数据转换等场景。通过`parse`和`unparse`函数,轻松实现XML与字典间的转换,支持复杂结构和属性处理,并能有效管理错误。此外,还提供了实战案例,展示如何从XML配置文件中读取数据库连接信息并使用。
Python中的xmltodict库
|
13天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
49 4
|
13天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
25 2
|
1月前
|
网络协议 数据库连接 Python
python知识点100篇系列(17)-替换requests的python库httpx
【10月更文挑战第4天】Requests 是基于 Python 开发的 HTTP 库,使用简单,功能强大。然而,随着 Python 3.6 的发布,出现了 Requests 的替代品 —— httpx。httpx 继承了 Requests 的所有特性,并增加了对异步请求的支持,支持 HTTP/1.1 和 HTTP/2,能够发送同步和异步请求,适用于 WSGI 和 ASGI 应用。安装使用 httpx 需要 Python 3.6 及以上版本,异步请求则需要 Python 3.8 及以上。httpx 提供了 Client 和 AsyncClient,分别用于优化同步和异步请求的性能。
python知识点100篇系列(17)-替换requests的python库httpx
|
19天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
38 7
|
19天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
24 3
|
22天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
47 5
|
21天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
31 2
下一篇
无影云桌面