朝题夕解——DP之印章

简介: 朝题夕解——DP之印章

题目描述

微信图片_20221018155545.jpg

解题报告


一、锁定算法类型


问题描述是很简洁的,就洋洋洒洒的一句话,因为数据范围很小,再深思片刻,题目的意思应该是让我门找一个最优解,那么可以大致估计出来是一个DP问题。


二、状态表示


因为DP问题是自底向上的求解问题,那么我们就需要确定一个数组来记录其中状态,用于递推求解的过程。大多数的确定方式就是,题目问什么,就定一个数组表示这个问题。

我一般使用的是从集合的角度来分析DP问题。也就是大家耳熟能详的这是摘自某位小伙伴的总结——闫式DP分析法。

image.jpeg

对于本题:

f [ i ] [ j ] f[i][j]f[i][j]就表示从前i ii张印章凑齐j jj种图案的集合的概率。那么最后的答案也就是f [ m ] [ n ] f[m][n]f[m][n]


三、状态计算


状态计算本质来说了,是对定义的这个集合进行划分的过程。划分的依据是最后一个不同点。



对于本题而言,最后一个不同点是:我现在正准备拿的这个图案是否已经和前面的重复了。


如果有重复,说明j种图案的印章已经凑齐了;如果没有重复,那就是还没有凑齐。


对于有重复:表示拿的前i − 1 i-1i−1枚印章中就已经凑出了j jj种图案,正要拿的这个第i ii枚印章,它上面的图案与之前拿的是有重复的了。所以获得图案的概率依旧是j / n j/nj/n

那么,状态转移方程为:f[i][j] = f[i-1][j]*(j/n)


对于无重复的:表示拿的前i − 1 i-1i−1枚印章中只是出现了j − 1 j-1j−1种图案,正要拿的这个第i ii枚印章应该是要凑齐的最后一种图案。因为前面已经出现了j − 1 j-1j−1种图案,剩下没有出现的就是总共有的n nn个图案减去已经出现的,即:n − ( j − 1 ) n-(j-1)n−(j−1)。这个时候,获得这枚图案的概率是:( n − j + 1 ) / n (n-j+1)/n(n−j+1)/n

那么,状态转移方程为:f[i-1][j-1]*( (n-j+1)/n) )


觉得抽象的小伙伴可以重新想想这句话,动态规划是自底向上的递推。


我结合着无重复的情况进行带入演示。我现在总共要拿8种图案,我现在已经拿了2种图案,现在要递推到拿3种图案的情况。

那么我获得的这第3枚应该是在(8-2)= 6种进行选择嘛。我可能拿小脑虎,可能拿小花花,也可能是拿小太阳图案。总之,我获得它的概率是6 / 8 6/86/8


总结以上步骤,就可以得到如下这张图:

微信图片_20221018155714.jpg

四、初始化

1、 i < j i<ji<j,就说明我们不可能凑齐,这个时候概率f i ] [ j ] fi][j]fi][j]=0


2、 j = 1 j=1j=1,就说明我们拿的i ii张印章里面,只要凑齐1种就行( 是随便1种就可以了,就比如说 房子💒、星星🌟、花花🌻这三种,我拿房子图案出现1种概率,拿星星图案出现1种概率,拿花花图案也会出现1种,概率计算的时候就算的是这三种概率的和。)


其中j = 1 j=1j=1的时候我们也可以分两种情况:

①一种就是 i = 1 i=1i=1,这个时候就相当于我们的概率f [ i ] [ j ] = 1 f[i][j]=1f[i][j]=1;


②另一种是 i > 1 i>1i>1,我有i ii种选择,每种选择会出现的概率是1 / n 1/n1/n,那么我们每个图案的概率都是f [ i ] [ 1 ] = ( 1 / n ) i f[i][1]=(1/n)^if[i][1]=(1/n)

i;因为我们的图案不指定哪一种,所以我们的f [ i ] [ j ] f[i][j]f[i][j]是n nn种图案的概率之和,倘若将1 / n 1/n1/n设定为p pp。那么概率就是p i ∗ n p^i * np

i∗n,化简之后就是p i − 1 p^{i-1}p

i−1


参考代码(C++版本)

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
const int N = 25;
double f[N][N];//i张印章凑齐j种图案的概率
double p;//概率
int n,m;
int main()
{
  cin >> n >> m;
  p = 1.0/n;
  memset(f,0,sizeof(f));
  //DP
  for(int i = 1; i <= m;i++)//i张印章
    for(int j =1; j <= n;j++)//j种图案
    {
      //当i小于j的时候,肯定是凑不齐的
      if(i < j) f[i][j] = 0;
      //当只用凑齐一个印章时
      //j只要所有图案中的一种就可以了,所以我们(1/n)^i还要再乘n,就是p^i-1
      else if(j == 1) f[i][1] = pow(p,i-1);
      //考虑当前这个j是否已经凑齐
      else f[i][j] = (f[i-1][j])*(j*p) + (f[i-1][j-1])*((n-j+1)*p);
    }
  //输出结: m个印章,凑出n个图案
  printf("%.4lf\n",f[m][n]);
  return 0;
}
相关文章
|
8月前
流(树形dp,换根dp)
流(树形dp,换根dp)
43 0
hdoj 1176免费馅饼(dp)
tmax = max(dp[t+1][i], dp[t+1][i-1]); else {
40 0
|
8月前
树形dp常见类型——换根dp
树形dp常见类型——换根dp
|
8月前
【每日一题Day186】LC1105填充书架 | dp
【每日一题Day186】LC1105填充书架 | dp
71 0
|
Android开发
Android颜色透明度16进制对照表
Android颜色透明度16进制对照表
211 0
|
人工智能
UPC2021个人训练赛第39场 C: 粉兔找妹子(换根dp)
UPC2021个人训练赛第39场 C: 粉兔找妹子(换根dp)
104 0
UPC2021个人训练赛第39场 C: 粉兔找妹子(换根dp)
codeforces118——D. Caesar‘s Legions(DP)
codeforces118——D. Caesar‘s Legions(DP)
105 0
codeforces118——D. Caesar‘s Legions(DP)
|
编解码 Android开发
关于Android获取屏幕宽高、dp、sp、px之间的转化
开发过程中,动态创建布局,或者自定义view,少不了需要获取屏幕宽高,这里的宽高指手机屏幕的分辨率,单位是px,而我们在布局文件中用到的空间宽高单位是dp,字体用的是sp。 这几个计量单位之间,是有关联的,比如dp与px,是通过density来相互转化的,px跟sp则通过scaledDensity来相互转化,类似于小学的除数、被除数、商,三者之间的关系。
542 0
|
人工智能 算法
养猪_lduoj_dp
Description 你有一个猪圈,有N头猪,每天你最多可以杀一头猪卖钱,获益就是猪的体重。但是每过一天每头猪的体重都会下降P[i](当然,如果猪体重≤0了,自然获利为0),问K天内你的最大获利。 Input 第一行两个数N,K; 第二行N个数,表示猪的初始重量A[i]; 第三行N个数表示P[i]。 Output 一行一个数表示最大获利。
110 0