JMS VS AMQP

简介: 《高性能》系列

4.1 JMS

4.1.1 JMS 简介

JMS(JAVA Message Service,java 消息服务)是 java 的消息服务,JMS 的客户端之间可以通过 JMS 服务进行异步的消息传输。JMS(JAVA Message Service,Java 消息服务)API 是一个消息服务的标准或者说是规范,允许应用程序组件基于 JavaEE 平台创建、发送、接收和读取消息。它使分布式通信耦合度更低,消息服务更加可靠以及异步性。

ActiveMQ 就是基于 JMS 规范实现的。


4.1.2 JMS 两种消息模型

① 点到点(P2P)模型

15.png

使用队列(Queue)作为消息通信载体;满足生产者与消费者模式,一条消息只能被一个消费者使用,未被消费的消息在队列中保留直到被消费或超时。比如:我们生产者发送 100 条消息的话,两个消费者来消费一般情况下两个消费者会按照消息发送的顺序各自消费一半(也就是你一个我一个的消费。)

② 发布/订阅(Pub/Sub)模型16.png发布订阅模型(Pub/Sub) 使用主题(Topic)作为消息通信载体,类似于广播模式;发布者发布一条消息,该消息通过主题传递给所有的订阅者,在一条消息广播之后才订阅的用户则是收不到该条消息的。

4.1.3 JMS 五种不同的消息正文格式

JMS 定义了五种不同的消息正文格式,以及调用的消息类型,允许你发送并接收以一些不同形式的数据,提供现有消息格式的一些级别的兼容性。

  • StreamMessage -- Java 原始值的数据流
  • MapMessage--一套名称-值对
  • TextMessage--一个字符串对象
  • ObjectMessage--一个序列化的 Java 对象
  • BytesMessage--一个字节的数据流


4.2 AMQP

AMQP,即 Advanced Message Queuing Protocol,一个提供统一消息服务的应用层标准 高级消息队列协议(二进制应用层协议),是应用层协议的一个开放标准,为面向消息的中间件设计,兼容 JMS。基于此协议的客户端与消息中间件可传递消息,并不受客户端/中间件同产品,不同的开发语言等条件的限制。

RabbitMQ 就是基于 AMQP 协议实现的。

17.png

总结:

  • ActiveMQ 的社区算是比较成熟,但是较目前来说,ActiveMQ 的性能比较差,而且版本迭代很慢,不推荐使用。
  • RabbitMQ 在吞吐量方面虽然稍逊于 Kafka 和 RocketMQ ,但是由于它基于 erlang 开发,所以并发能力很强,性能极其好,延时很低,达到微秒级。但是也因为 RabbitMQ 基于 erlang 开发,所以国内很少有公司有实力做 erlang 源码级别的研究和定制。如果业务场景对并发量要求不是太高(十万级、百万级),那这四种消息队列中,RabbitMQ 一定是你的首选。如果是大数据领域的实时计算、日志采集等场景,用 Kafka 是业内标准的,绝对没问题,社区活跃度很高,绝对不会黄,何况几乎是全世界这个领域的事实性规范。
  • RocketMQ 阿里出品,Java 系开源项目,源代码我们可以直接阅读,然后可以定制自己公司的 MQ,并且 RocketMQ 有阿里巴巴的实际业务场景的实战考验。RocketMQ 社区活跃度相对较为一般,不过也还可以,文档相对来说简单一些,然后接口这块不是按照标准 JMS 规范走的有些系统要迁移需要修改大量代码。还有就是阿里出台的技术,你得做好这个技术万一被抛弃,社区黄掉的风险,那如果你们公司有技术实力我觉得用 RocketMQ 挺好的
  • Kafka 的特点其实很明显,就是仅仅提供较少的核心功能,但是提供超高的吞吐量,ms 级的延迟,极高的可用性以及可靠性,而且分布式可以任意扩展。同时 kafka 最好是支撑较少的 topic 数量即可,保证其超高吞吐量。kafka 唯一的一点劣势是有可能消息重复消费,那么对数据准确性会造成极其轻微的影响,在大数据领域中以及日志采集中,这点轻微影响可以忽略这个特性天然适合大数据实时计算以及日志收集。
相关文章
|
SQL 监控 关系型数据库
MySQL Metadata Locking(MDL)机制的实现与获取机制分析
MySQL Metadata Locking(MDL)机制的实现与获取机制分析 为了满足数据库在并发请求下的事务隔离性和一致性要求,同时针对MySQL插件式多种存储引擎都能发挥作用,MySQL在Server层实现了 Metadata Locking(MDL)机制。这种机制可以灵活自定义锁的对象、锁的类型以及不同锁类型的优先级,甚至可以做到在系统不同状态时动态调整不同锁类型的兼容性。本篇文章将详细介绍MDL系统中的常用数据结构及含义,从实现角度讨论MDL的获取机制与死锁检测,以及在实践中如何监控MDL状态。
539 2
|
5月前
|
存储 机器学习/深度学习 Java
Java 大视界 -- Java 大数据在智慧水利水资源调度与水情预测中的应用创新(180)
本文探讨了Java大数据技术在智慧水利中的创新应用,重点分析了其在水资源调度与水情预测中的关键技术与实践案例。通过大数据存储、实时处理与深度学习模型,Java有效提升了水利数据管理效率与水情预测准确性,助力传统水利向智能化转型。
|
4月前
|
机器学习/深度学习 算法 数据挖掘
淘宝 API 开启天猫店铺客户流失预警新模式
在竞争激烈的电商市场中,天猫店铺面临客户流失的挑战。淘宝新推出的API为客户流失预警提供了创新解决方案,通过数据分析和机器学习,帮助商家识别潜在流失客户并及时干预,从而提升客户留存率、优化营销成本,助力店铺高效运营与可持续增长。
110 0
|
机器学习/深度学习 存储 自然语言处理
【机器学习】LoRA:大语言模型中低秩自适应分析
【机器学习】LoRA:大语言模型中低秩自适应分析
706 5
|
API 持续交付 开发工具
2024年开发者工具箱:提升生产力的十大利器
本文介绍了2024年最值得关注的十大开发工具,包括Visual Studio Code、Git、Docker等,涵盖代码编辑、版本控制、容器化技术、API开发、自动化部署、团队协作等多个方面,旨在帮助开发者提升工作效率和代码质量。选择合适的工具对提升开发效率至关重要,希望本文能助你一臂之力。注:工具介绍基于2024年技术和市场情况。
|
12月前
|
机器学习/深度学习 人工智能 数据处理
《C++与 Python 人工智能框架的无缝对接:开启数据处理新境界》
在数字化时代,C++和Python分别在数据处理和人工智能领域展现独特优势。C++以其高效能和底层资源控制能力,适用于数据的初步处理;Python则因简洁灵活及丰富的AI库,擅长复杂算法的实现。两者结合,不仅强化了数据处理与分析能力,还为解决实际问题提供了新途径,成为技术领域的热点。本文探讨了这种集成的重要性和应用场景,如图像识别、金融分析等,并讨论了集成过程中可能遇到的挑战及解决方案,最后分享了成功案例与未来展望。
208 10
|
机器学习/深度学习 数据可视化 Swift
CAS-ViT:用于高效移动应用的卷积加法自注意力视觉Transformer
这是8月份再arxiv上发布的新论文,我们下面一起来介绍这篇论文的重要贡献
606 10
CAS-ViT:用于高效移动应用的卷积加法自注意力视觉Transformer
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品推荐系统的深度学习模型
使用Python实现智能食品推荐系统的深度学习模型
604 2
|
SQL 安全 JavaScript
告别Web安全小白!Python实战指南:抵御SQL注入、XSS、CSRF的秘密武器!
【9月更文挑战第12天】在Web开发中,安全漏洞如同暗礁,尤其对初学者而言,SQL注入、跨站脚本(XSS)和跨站请求伪造(CSRF)是常见挑战。本文通过实战案例,展示如何利用Python应对这些威胁。首先,通过参数化查询防止SQL注入;其次,借助Jinja2模板引擎自动转义机制抵御XSS攻击;最后,使用Flask-WTF库生成和验证CSRF令牌,确保转账功能安全。掌握这些技巧,助你构建更安全的Web应用。
282 5
|
监控 算法 自动驾驶
目标检测算法:从理论到实践的深度探索
【7月更文第18天】目标检测,作为计算机视觉领域的核心任务之一,旨在识别图像或视频中特定对象的位置及其类别。这一技术在自动驾驶、视频监控、医疗影像分析等多个领域发挥着至关重要的作用。本文将深入浅出地介绍目标检测的基本概念、主流算法,并通过一个实际的代码示例,带您领略YOLOv5这一高效目标检测模型的魅力。
1298 11

热门文章

最新文章