python和Go性能相差200倍?实在忍不住吐槽某乎的一些大佬,没去仔细分析过什么文章都好意思发!

简介: python和Go性能相差200倍?实在忍不住吐槽某乎的一些大佬,没去仔细分析过什么文章都好意思发!

最近在知乎上看到一篇文章,通过计算累加来测试python和go的性能:


image.pngimage.png

然后得出了如下结论:


image.pngimage.png

解释性语言和编译性语言对于上述代码的处理完全就是两种方式。

GO是编译性语言,编译器碰到类似上述已知数据、已知循环次数的时候,就会优化成计算公式进行计算了,根本就不会走迭代循环的过程!!!

而python是解释性语言,上述代码是个迭代器,会一次一次的累加进行循环执行!,差个200倍很正常!

这也是为什么使用python进行大数据或者科学计算的时候要使用numpy库,因为numpy的底层执行是用C/C++/Fortran这些编译性语言来执行的!


其实大多数程序员接触的应用场景下,使用语言不同导致的性能差距都是微乎其微的!

而很多情况,真正出现了性能差异,更多的是代码写的Low而已。与其研究语言性能差多少,不如多花些功夫去学习!!!

目录
相关文章
|
18天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
111 70
|
26天前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
43 3
|
20天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
121 68
|
16天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
92 36
|
10天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
54 15
|
14天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
71 18
|
23天前
|
测试技术 开发者 Python
使用Python解析和分析源代码
本文介绍了如何使用Python的`ast`模块解析和分析Python源代码,包括安装准备、解析源代码、分析抽象语法树(AST)等步骤,展示了通过自定义`NodeVisitor`类遍历AST并提取信息的方法,为代码质量提升和自动化工具开发提供基础。
38 8
|
29天前
|
Go API 数据库
Go 语言中常用的 ORM 框架,如 GORM、XORM 和 BeeORM,分析了它们的特点、优势及不足,并从功能特性、性能表现、易用性和社区活跃度等方面进行了比较,旨在帮助开发者根据项目需求选择合适的 ORM 框架。
本文介绍了 Go 语言中常用的 ORM 框架,如 GORM、XORM 和 BeeORM,分析了它们的特点、优势及不足,并从功能特性、性能表现、易用性和社区活跃度等方面进行了比较,旨在帮助开发者根据项目需求选择合适的 ORM 框架。
81 4
|
29天前
|
存储 大数据 Python
利用Python的高级语法优化代码可以显著提高代码的可读性、简洁性和性能
利用Python的高级语法优化代码可以显著提高代码的可读性、简洁性和性能
32 1
|
22天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现深度学习模型:智能食品市场分析
使用Python实现深度学习模型:智能食品市场分析
33 0