用C++类和队列实现图搜索的广度优先遍历算法

简介: 用C++类和队列实现图搜索的广度优先遍历算法

广度优先遍历概念


出现背景:


求解节点间的最短路径,因为它的特点是 "搜到就是最优解"。


定义:


广度优先搜索(Breadth-First Search),又称作宽度优先搜索。BFS是一种完备策略,即只要问题有解,它就一定可以找到解。并且,广度优先搜索找到的解,还一定是路径最短的解。但是它盲目性较大,尤其是当目标节点距初始节点较远时,将产生许多无用的节点,因此其搜索效率较低。一般只有需求最优解的时候会用BFS。


本案例示意图



要求:


使用广度优先遍历算法输出访问结点的顺序,结果为0、1、2、4、5、8、9、3、6、7、10


邻接矩阵的设计



按照案例给出的图,我简化成了这个邻接矩阵,画法就是,两个结点之间相连设置为T,不相连设置为F,规定结点自身与自身不相连,当然对T和F要有声明,例如 const bool T =true,F=false;这样T就代表通路,F就代表断路了。


代码实现


#include<iostream>
using namespace std;
const int n = 11;//结点个数
const int SIZE = 10;
class queue
{
private:
  int buffer[SIZE];
  int rear, head;//rear指向队尾元素,front指向队列前一格
  int update(int value) { return (value + 1) % SIZE; }
public:
  queue():head(0),rear(0){}
  bool queueNull() { return rear == head;}//队空队尾下标和队首下标相同
  bool queueMax() { return update(rear) == head; } //队满
  bool queueAdd(int E)
  {
  if (queueMax()) return false;
  rear = update(rear);
  buffer[rear] = E;
  return true;
  }
  bool getFirstQueue(int& E)
  {
  if (queueNull()) return false;
  head = update(head);
  E = buffer[head];
  return true;
  }
};
const bool F = false, T = true;
bool nextClose[n][n] = {
    {F,T,T,F,F,F,F,F,F,F,F},
    {T,F,F,F,T,T,F,F,F,F,F},
    {T,F,F,F,F,F,F,F,T,T,F},
    {F,F,F,F,T,F,F,F,F,F,F},
    {F,T,F,T,F,F,T,F,F,F,F},
    {F,T,F,F,F,F,F,T,F,F,T},
    {F,F,F,F,T,F,F,F,F,F,F},
    {F,F,F,F,F,T,F,F,F,F,F},
    {F,F,T,F,F,F,F,F,F,F,F},
    {F,F,T,F,F,F,F,F,F,F,F},
    {F,F,F,F,F,T,F,F,F,F,F}
};
bool flag[n];
void BreadthFirstSearch(int begin)
{
  for (int i = 0; i < n; i++) flag[i] = false;
  queue que;//创建队列对象
  que.queueAdd(begin);
  flag[begin] = true;
  int node;
  while (!que.queueNull())
  {
  que.getFirstQueue(node);
  cout << node << ",";
  for (int i=0;i<n;i++)
  {
    if (nextClose[node][i] && !flag[i])
    {
    que.queueAdd(i);
    flag[i] = true;
    }
  }
  }
}
int main()
{
  BreadthFirstSearch(0);
  cout << "Hello World" << endl;
}


运行结果:



关键代码详解


相信使用类来做这个案例,很多入门的朋友都会很疑惑,对这方面知识了解比较少,所以我把最重要的两部分队列类和bfs具体实现详解一下

关于类


const int n = 11;//结点个数
const int SIZE = 10;
class queue
{
private:
  int buffer[SIZE];
  int rear, head;//rear指向队尾元素,front指向队列前一格
  int update(int value) { return (value + 1) % SIZE; }
public:
  queue():head(0),rear(0){}
  bool queueNull() { return rear == head;}//队空队尾下标和队首下标相同
  bool queueMax() { return update(rear) == head; } //队满
  bool queueAdd(int E)
  {
  if (queueMax()) return false;
  rear = update(rear);
  buffer[rear] = E;
  return true;
  }
  bool getFirstQueue(int& E)
  {
  if (queueNull()) return false;
  head = update(head);
  E = buffer[head];
  return true;
  }
};


首先私有的属性有 长度为10的buffer整型数组、用来指向数组的rear和head下标,和一个undate方法用来使rear和head的指向往下进行,对10求余就是得到个位数,由于是加1后求余,所以会逐步往下进行;公有区域下第一个就是queue的无参构造了,他利用初始化列表给head和rear的初始化为0;下面queueNull 是队空的判断(rear=head);queMax 是队满的判断,让rear或者head下标重置为零;queAdd 是追加方法,将数据加到buffer队列中,如果队满,不能追加,方法结束,当队非满时,尾下标加一,将输入数据加入到队列第二个空中;而getFirstQueue 方法是取队首元素的方法,当队非空时,head下标加一,取出队列第二格元素。


关于bfs的具体实现


bool flag[n];
void BreadthFirstSearch(int begin)
{
  for (int i = 0; i < n; i++) flag[i] = false;
  queue que;//创建队列对象
  que.queueAdd(begin);
  flag[begin] = true;
  int node;
  while (!que.queueNull())
  {
  que.getFirstQueue(node);
  cout << node << ",";
  for (int i=0;i<n;i++)
  {
    if (nextClose[node][i] && !flag[i])
    {
    que.queueAdd(i);
    flag[i] = true;
    }
  }
  }
}


假设begin为0结点,先把标志位flag数组全置为false,接下来添加0结点到队列第二个格子,并把标志位置为true,定义node,取出0结点并输出,代表已经访问过,后面的一重循环是为了把当前结点相连的结点全部追加到队列中,当然已经访问的不会追加,追加后把该结点标志位置为true;rear 和 head 下标会随着元素的追加不断变大,当下标大于队列长度n时,又变为从零开始增大,不追加元素的时候,rear不变,等head慢慢接近rear,当二者相等时,程序结束。


五图助理解


初始状态,此时rear和head均为0,将结点0待添加



将结点0插入buffer[1],并将与0结点连接的1、2结点追加到队列中,rear指向队尾,head取队首元素0,停留在1处,下一次循环head加1,继续追加和结点1相连的结点



这次head停留在2处,追加了与1结点相连的4、5结点,rear依然指向队尾



这里显示rear即将大于队列长度的情况,此时把head指向的4结点连接的结点3、6追加到队列中



继续加连接5结点的7、10结点,但是上一次队列已满,经过 return value=(value+1)%10,rear变为0,最终变为一,停留在1上,后续不再增加结点。随着循环的进行,head不断往后走,直到大于队列,重置为0,1,等于rear时,循环结束,rear==head,整个程序结束。



调试界面


浅看一下调试结果,在取队首和追加结点之间加断点调试debug,head等于9时,输出结点值6,当head等于1时,输出结点时,再调试程序就会退出,因为rear=head,队满程序结束。




相关文章
|
3月前
|
存储 算法
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
这篇文章详细介绍了图的概念、表示方式以及深度优先遍历和广度优先遍历的算法实现。
77 1
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
|
3天前
|
负载均衡 算法 安全
探秘:基于 C++ 的局域网电脑控制软件自适应指令分发算法
在现代企业信息化架构中,局域网电脑控制软件如同“指挥官”,通过自适应指令分发算法动态调整指令发送节奏与数据量,确保不同性能的终端设备高效运行。基于C++语言,利用套接字实现稳定连接和线程同步管理,结合实时状态反馈,优化指令分发策略,提升整体管控效率,保障网络稳定,助力数字化办公。
37 19
|
7天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
28 2
|
16天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
13天前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
20天前
|
算法 安全 C++
用 C++ 算法控制员工上网的软件,关键逻辑是啥?来深度解读下
在企业信息化管理中,控制员工上网的软件成为保障网络秩序与提升办公效率的关键工具。该软件基于C++语言,融合红黑树、令牌桶和滑动窗口等算法,实现网址精准过滤、流量均衡分配及异常连接监测。通过高效的数据结构与算法设计,确保企业网络资源优化配置与安全防护升级,同时尊重员工权益,助力企业数字化发展。
39 4
|
2月前
|
算法 搜索推荐 数据库
二分搜索:高效的查找算法
【10月更文挑战第29天】通过对二分搜索的深入研究和应用,我们可以不断挖掘其潜力,为各种复杂问题提供高效的解决方案。相信在未来的科技发展中,二分搜索将继续发挥着重要的作用,为我们的生活和工作带来更多的便利和创新。
67 1
|
3月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
58 4
|
3月前
|
算法 决策智能
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数
该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。
|
3月前
|
存储 算法 C++
高精度算法(加、减、乘、除,使用c++实现)
高精度算法(加、减、乘、除,使用c++实现)
909 0
高精度算法(加、减、乘、除,使用c++实现)

热门文章

最新文章