【雷达】基于粒子群算法优化综合线阵低副瓣方向图附matlab代码

简介: 【雷达】基于粒子群算法优化综合线阵低副瓣方向图附matlab代码

 1 简介

粒子群优化算法(PSO)是一种基于群智能的随机优化算法,其理论简单,参数少,易于实现,可用于解决大量非线性,不可微和多峰值的复杂问题.本文介绍了粒子群算法的基本原理和基本流程,研究了如何将这种方法应用于阵列天线的方向图综合上,给出了PSO算法在阵列天线方向图综合的应用实例,结果表明粒子群算法在阵列天线方向图综合上有很好的应用前景.

2 部分代码

function f_out=present_array(Ns,d,theta,pop_a_present)

f1=zeros(1,Ns);

c=3e8;

fc=6e9;                    % 工作频率(hz)

numda=c/fc;                % 波长 wave length

N=16;                      % 阵列数

d=0.5*numda;               % 阵元间距

k=(2*pi)/numda;            % 波数

%------每个粒子所包含的值只为馈电的一半,因为馈电对称,所以在综合时,需将一半的馈电对称恢复。可调用amplitude_curve.m函数。

for i=1:N/2

   b(i)=pop_a_present(N/2-i+1);

end

pop_a_present1=[pop_a_present b];

for l=1:Ns

   for i=1:N

       f(l)=pop_a_present1(i)*exp(j*(k*(i-1)*d*sin(theta(l)*pi/180)));

       f1(l)=f1(l)+f(l);

   end

end

f_out=20*log10(abs(f1)/max(abs(f1)));%转化为dB形式。


3 仿真结果

image.gif编辑

image.gif编辑

4 参考文献

[1]石永昌, 胡明春, 李建新. 基于粒子群优化算法的阵列天线方向图综合[J]. 微波学报, 2010(S2):143-145.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

相关文章
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
113 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
144 8
|
2月前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
142 8
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
212 0
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
163 2
|
3月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
206 3
|
3月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
140 6
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
158 8
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。

热门文章

最新文章