阿里达摩院决策智能实验室运营小编,致力于给大家带来更多更实用的科普文章。
在使用优化求解器解决实际问题的过程中,通过程序接口输入优化模型往往会耗费大量时间和精力,且容易出错。为了简化这一步骤,建模语言应运而生。建模语言最初的概念是在1976年提出的,后经过不断的发展,形成了如今蓬勃的技术、产品和应用市场。建模语言往往并不对实际问题进行求解,而专注在模型建立本身,其目的是将复杂的优化问题简化为抽象的代数表达形式;让用户在开发上只需要专注于代数模型的建立,模型完成后再将数据分别引入。如此不但加快开发流程,更有效减少模型输入错误的可能性。接下来我们将发布一系列文章,对常见的AMPL, Pyomo, PuLP等建模语言进行简要的介绍。
在使用优化求解器解决实际问题的过程中,通过程序接口输入优化模型往往会耗费大量时间和精力,且容易出错。为了简化这一步骤,建模语言应运而生。建模语言最初的概念是在1976年提出的,后经过不断的发展,形成了如今蓬勃的技术、产品和应用市场。建模语言往往并不对实际问题进行求解,而专注在模型建立本身,其目的是将复杂的优化问题简化为抽象的代数表达形式;让用户在开发上只需要专注于代数模型的建立,模型完成后再将数据分别引入。如此不但加快开发流程,更有效减少模型输入错误的可能性。接下来我们将发布一系列文章,对常见的AMPL, Pyomo, PuLP等建模语言进行简要的介绍。
在conda环境下,如何创建并激活Python虚拟环境呢?
在使用MindOpt优化求解器解决实际问题时,其中重要的一环在于如何建立优化模型,以及存储优化模型以便于作为求解器的输入文件。存储优化模型的文件,其关键在于定义一种清晰的格式,用来说明优化模型的数学结构和相关的数据。接下来我们将发布一系列文章,对常见的MPS/LP等格式的模型文件和命名规范进行简要的介绍。
在使用MindOpt优化求解器解决实际问题时,其中重要的一环在于如何建立优化模型,以及存储优化模型以便于作为求解器的输入文件。存储优化模型的文件,其关键在于定义一种清晰的格式,用来说明优化模型的数学结构和相关的数据。接下来我们将发布一系列文章,对常见的MPS/LP等格式的模型文件和命名规范进行简要的介绍。
MindOpt 是阿里巴巴达摩院决策智能实验室研发出的求解优化问题的专业计算软件。可广泛应用于云计算、零售、金融、制造、交通、能源等领域,是深埋于智能决策场景底层的“终极利器”、“降本增效”的好工具。那么,要如何申请试用与运行MindOpt求解器呢?
物流中心的选址、云计算资源的调用、电力系统的优化、打车订单的派遣,如何为这些生产生活中的应用难题找到最优解?答案是——数学规划求解器。