暂时未有相关云产品技术能力~
暂无个人介绍
算法作为程序员的必修课,是每位程序员必须掌握的基础。作为Python忠实爱好者,本篇东哥将通过Python来手撕5大经典排序算法,结合例图剖析内部实现逻辑,对比每种算法各自的优缺点和应用点。相信我,耐心看完绝对有收获。
VScode、Pycharm、Spyder 都是目前非常好的Python编辑器,但在数据科学领域,Jupyter notebook 仍有无法取代的地方。正是基于IPython实现的这种交互式操作,给数据分析、建模过程检验中间结果和可视化带来了极大的方便。
有很多朋友问我学习了Python后,有没有什么好的项目可以练手。 其实,做项目主要还是根据需求来的。但是对于一个初学者来说,很多复杂的项目没办法独立完成,因此博主挑选了一个非常适合初学者的项目,内容不是很复杂,但是非常有趣,我相信对于初学者小白来说是再好不过的项目了。
很多学习Python的朋友在项目实战中会遇到不少功能实现上的问题,有些问题并不是很难的问题,或者已经有了很好的方法来解决。当然,孰能生巧,当我们代码熟练了,自然就能总结一些好用的技巧,不过对于那些还在刚熟悉Python的同学可能并不会那么轻松。 本次给大家推荐一个学习这些技巧的很好的资源“30-seconds-of-python”,所有技巧方法只要30秒就能get到,完全可以利用业务时间不断积累。下面赶紧来看一下。 https://github.com/30-seconds/30-seconds-of-python
数据探索很麻烦?推荐一款史上最强大的特征分析可视化工具:yellowbrick
Python一行代码搞定炫酷可视化,你需要了解一下Cufflinks
排序问题是所有程序员一定会遇到的问题,Python内置的排序工具sort()和sorted()功能强大,可以实现自定义的复杂式排序。平时我们使用两个函数可能没有仔细研究过它们的区别,随想随用了。但实际上二者还是有很大的去别的,在一些场景中不同互换使用。
前些日子,星球里讨论风控建模面试中的一些问题,其中就提到了 “卡方分箱”。大家对卡方分箱都有或多或少的疑问,应星球朋友要求,最近整理了一下我对卡方分箱的理解,也借此分享给公众号的朋友们。
嫌pandas慢又不想改代码怎么办?来试试Modin
如何在一场面试中展现你对Python的coding能力?
本篇为树模型系列第三篇,旨在从最简单的决策树开始学习,循序渐进,最后理解并掌握复杂模型GBDT,Xgboost,为要想要深入了解机器学习算法和参加数据挖掘竞赛的朋友提供帮助。
本篇为树模型系列第二篇,旨在从最简单的决策树开始学习,循序渐进,最后理解并掌握复杂模型GBDT,Xgboost,为要想要深入了解机器学习算法和参加数据挖掘竞赛的朋友提供帮助。
决策树学习笔记(一):特征选择
作为一个Python爱好者,如何写出高可读性的代码?
Jupyter Notebook是一个非常赞的可用于教学,探索和编程的环境,但最原始的Jupyter Notebook是缺乏一些强功能的。但幸运的是,有很多方法可以改进这个工具,比如:Jupyter Notebook的扩展。
还在抱怨pandas运行速度慢?这几个方法会颠覆你的看法
手把手教你用Bokeh进行可视化数据分析(附源码)
【机器学习笔记】:逻辑回归实战练习(二)
【机器学习笔记】:从零开始学会逻辑回归(一)
【机器学习笔记】:大话线性回归(三)
其实还有很多问题需要我们解决:这个模型的效果如何?如何评判这个效果?开始线性模型的假设成立吗?如何验证这些假设?还会有其它问题会影响模型效果吗?
线性回归作为监督学习中经典的回归模型之一,是初学者入门非常好的开始。宏观上考虑理解性的概念,我想我们在初中可能就接触过,y=ax,x为自变量,y为因变量,a为系数也是斜率。如果我们知道了a系数,那么给我一个x,我就能得到一个y,由此可以很好地为未知的x值预测相应的y值。这很符合我们正常逻辑,不难理解。那统计学中的线性回归是如何解释的呢?
递归是一个很经典的算法,在实际中应用广泛,也是面试中常常会提到的问题。本文就递归算法介绍如何在Python中实现递归的思想,以及递归在Python中使用时的一些注意事项,希望能够对使用Python的朋友提供一些帮助。
关于互联网金融授信产品的风控建模
【Python数据分析基础】: 异常值检测和处理
圣人曾说过:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。
本篇博主将要总结一下使用Python绘制直方图的所有方法,大致可分为三大类(详细划分是五类,参照文末总结): 纯Python实现直方图,不使用任何第三方库 使用Numpy来创建直方图总结数据 使用matplotlib,pandas,seaborn绘制直方图
博主根据自己的真实学习经历列出了一个学习计划,拟定在星球中按照以下这个计划进行一步步的分享和讲解。
最近大家都在追看世界杯,博主也是一样,偶尔也贪黑看球,虽然踢得不怎么样,但是热情却很高。依稀记得小学的时候为了攒球星卡吃了无数袋的干脆面,什么巴西罗纳尔多,法国齐达内,各种球星,当然也都是因为热爱足球才含着泪吃进去的。
本次将主要介绍 分类数据可视化的使用。
本次将主要介绍数据集的分布可视化的使用。
本次将主要介绍颜色风格设置的使用。
最近在做几个项目的数据分析,每次用到seaborn进行可视化绘图的时候总是忘记具体操作。虽然seaborn的官方网站已经详细的介绍了使用方法,但是毕竟是英文,而且每次都上网查找不是很方便,还不如自己重新来一遍。因此博主想从零开始将seaborn学习一遍,做一个总结,也希望供大家使用参考。
本篇将给大家介绍一款超级好用的工具:Jupyter notebook。
词云的使用相信大家已经不陌生了,使用很简单,直接调用wordcloud包就可以了。它的主要功能是根据文本词汇和词汇频率生成图片,从中可以直观的看出各个词汇所占比重。最近正好想做一个人的logo,于是乎决定使用词云来制作完成。
数据科学家花了大量的时间清洗数据集,并将这些数据转换为他们可以处理的格式。事实上,很多数据科学家声称开始获取和清洗数据的工作量要占整个工作的80%。因此那么处理这些杂乱不规则数据是非常重要的。