Toad:基于 Python 的标准化评分卡模型(下)

简介: 在信贷的风控模型中最常用、最经典的可能要属评分卡了,所谓评分卡就是给信贷客户进行打分,按照不同业务场景可为贷前、贷中、贷后和反欺诈,一般叫做ABCF卡。模型得到分数,通过设置cutoff阈值给出评估结果,结果可直接用于通过或拒绝,或者用于策略应用。

观察分箱并调整

因为自动分箱也不可能满足所有需要,很多情况下还是要手动分箱。toad除了上面自动分箱以外,还提供了可视化分箱的功能,帮助调整分箱节点,比如观察变量的单调性。有两种功能:

1. 时间内观察

toad.plot.bin_plot(dataframe, x = None, target = target) 也就是不考虑时间的因素,单纯的比较各个分箱里的bad_rate,观察单调性。

# 看'var_d5'在时间内的分箱
col = 'var_d5'
#观察单个变量分箱结果时,建议设置'labels = True'
bin_plot(c.transform(train_selected[[col,'target']], labels=True), x=col, target='target')

28.png


上图中,bar代表了样本量占比,红线代表了坏客户占比。通过观察发现分箱有些不合理,还有调整优化的空间,比如将F和M单独一箱,0和空值分为一箱。因此,使用c.set_rules(dict)对这个分箱进行调整。


# iv值较低,假设我们要 'F' 淡出分出一组来提高iv
#设置分组
rule = {'var_d5':[['O', 'nan'],['F'], ['M']]}
#调整分箱
c.set_rules(rule)
#查看手动分箱稳定性
bin_plot(c.transform(train_selected[['var_d5','target']], labels=True), x='var_d5', target='target')
badrate_plot(c.transform(OOT[['var_d5','target','month']], labels=True), target='target', x='month', by='var_d5')

29.png


2. 跨时间观察


toad.plot.badrate_plot:考虑时间因素,输出不同时间段中每箱的正样本占比,观察分箱随时间变量的稳定性。

  • target: 目标列
  • x: 时间列, string格式(要预先分好并设成string,不支持timestampe)
  • by: 需要观察的特征

下面分别观察变量var_d2在训练集和OOT测试集中随时间month变化的稳定性。正常情况下,每个分箱的bad_rate应该都有所区别,并且随时间保持稳定不交叉。如果折现有所交叉,说明分箱不稳定,需要重新调整。


from toad.plot import badrate_plot
col = 'var_d2'
# 观察 'var_d2' 分别在时间内和OOT中的稳定性
badrate_plot(c.transform(train[[col,'target','month']], labels=True), target='target', x='month', by=col)
badrate_plot(c.transform(OOT[[col,'target','month']], labels=True), target='target', x='month', by=col)
'''
敞口随时间变化而增大为优,代表了变量在更新的时间区分度更强。线之前没有交叉为优,代表分箱稳定。
'''

30.png31.png


五、WOE转化


WOE转化在分箱调整好之后进行,步骤如下:

  • 用上面调整好的Combiner(c)转化数据: c.transform,只会转化被分箱的变量。
  • 初始化woe transer:transer = toad.transform.WOETransformer()
  • 训练转化woe:transer.fit_transform训练并输出woe转化的数据,用于转化train/时间内数据
  • target:目标列数据(非列名)
  • exclude: 不需要被WOE转化的列。注意:会转化所有列,包括未被分箱transform的列,通过exclude删去不要WOE转化的列,特别是target列。
  • 根据训练好的transer,转化test/OOT数据:transer.transform

根据训练好的transer输出woe转化的数据,用于转化test/OOT数据。


# 初始化
transer = toad.transform.WOETransformer()
# combiner.transform() & transer.fit_transform() 转化训练数据,并去掉target列
train_woe = transer.fit_transform(c.transform(train_selected), train_selected['target'], exclude=to_drop+['target'])
OOT_woe = transer.transform(c.transform(OOT))
print(train_woe.head(3))


结果输出:

APP_ID_C  target    var_d2    var_d3    var_d5    var_d6    var_d7  \
0    app_1       0 -0.178286  0.046126  0.090613  0.047145  0.365305
1    app_2       0 -1.410248  0.046126 -0.271655  0.047145 -0.734699
2    app_3       0 -0.178286  0.046126  0.090613  0.047145  0.365305
    var_d11    var_b3    var_b9  ...  var_l_60  var_l_64  var_l_68  var_l_71  \
0 -0.152228 -0.141182 -0.237656  ...  0.132170  0.080656  0.091919  0.150975
1 -0.152228  0.199186  0.199186  ...  0.132170  0.080656  0.091919  0.150975
2 -0.152228 -0.141182  0.388957  ... -0.926987 -0.235316 -0.883896 -0.385976
   var_l_89  var_l_91  var_l_107  var_l_119  var_l_123    month
0  0.091901  0.086402  -0.034434   0.027322   0.087378  2019-03
1  0.091901  0.086402  -0.034434   0.027322   0.087378  2019-03
2  0.091901 -0.620829  -0.034434  -0.806599  -0.731941  2019-03
[3 rows x 34 columns]


六、逐步回归


toad.selection.stepwise


逐步回归特征筛选,支持向前,向后和双向。 逐步回归属于包裹式的特征筛选方法,这部分通过使用sklearnREF实现。

  • estimator: 用于拟合的模型,支持'ols', 'lr', 'lasso', 'ridge'
  • direction: 逐步回归的方向,支持'forward', 'backward', 'both' (推荐)
  • criterion: 评判标准,支持'aic', 'bic', 'ks', 'auc'
  • max_iter: 最大循环次数
  • return_drop: 是否返回被剔除的列名
  • exclude: 不需要被训练的列名,比如ID列和时间列

根据多次验证,一般来讲 direction = 'both'效果最好。estimator = 'ols'以及criterion = 'aic'运行速度快且结果对逻辑回归建模有较好的代表性。

# 将woe转化后的数据做逐步回归
final_data = toad.selection.stepwise(train_woe,target = 'target', estimator='ols', direction = 'both', criterion = 'aic', exclude = to_drop)
# 将选出的变量应用于test/OOT数据
final_OOT = OOT_woe[final_data.columns]
print(final_data.shape) # 逐步回归从31个变量中选出了10个


结果输出:

(43576, 13)


最后筛选后,再次确定建模要用的变量。

col = list(final_data.drop(to_drop+['target'],axis=1).columns)


七、建模和模型评估


首先,使用逻辑回归建模,通过sklearn实现。模型参数比如正则化、样本权重等不在这里详解。


# 用逻辑回归建模
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(final_data[col], final_data['target'])
# 预测训练和隔月的OOT
pred_train = lr.predict_proba(final_data[col])[:,1]
pred_OOT_may =lr.predict_proba(final_OOT.loc[final_OOT.month == '2019-05',col])[:,1]
pred_OOT_june =lr.predict_proba(final_OOT.loc[final_OOT.month == '2019-06',col])[:,1]
pred_OOT_july =lr.predict_proba(final_OOT.loc[final_OOT.month == '2019-07',col])[:,1]


然后,计算模型预测结果。风控模型常用的评价指标有: KSAUCPSI等。下面展示如果通过toad快速实现完成。


KS 和 AUC


from toad.metrics import KS, AUC
print('train KS',KS(pred_train, final_data['target']))
print('train AUC',AUC(pred_train, final_data['target']))
print('OOT结果')
print('5月 KS',KS(pred_OOT_may, final_OOT.loc[final_OOT.month == '2019-05','target']))
print('6月 KS',KS(pred_OOT_june, final_OOT.loc[final_OOT.month == '2019-06','target']))
print('7月 KS',KS(pred_OOT_july, final_OOT.loc[final_OOT.month == '2019-07','target']))


结果输出:

train KS 0.3707986228750539
train AUC 0.75060723924743
OOT结果
5月 KS 0.3686687175756087
6月 KS 0.3495273403486497
7月 KS 0.3796914199845523


PSI


PSI分为两种,一个是变量的PSI,一个是模型的PSI。

下面是变量PSI的计算,比较训练集和OOT的变量分布之间的差异。


toad.metrics.PSI(final_data[col], final_OOT[col])


结果输出:

var_d2      0.000254
var_d5      0.000012
var_d7      0.000079
var_d11     0.000191
var_b10     0.000209
var_b18     0.000026
var_b19     0.000049
var_b23     0.000037
var_l_20    0.000115
var_l_68    0.000213
dtype: float64


模型PSI的计算,分别计算训练集和OOT模型预测结果的差异,下面细分为三个月份比较。

print(toad.metrics.PSI(pred_train,pred_OOT_may))
print(toad.metrics.PSI(pred_train,pred_OOT_june))
print(toad.metrics.PSI(pred_train,pred_OOT_june))


另外,toad还提供了整个评价指标的汇总,输出模型预测分箱后评判信息,包括每组的分数区间,样本量,坏账率,KS等。

toad.metrics.KS_bucket

  • bucket:分箱的数量
  • method:分箱方法,建议用quantile(等人数),或step (等分数步长)

bad\_rate为每组坏账率:

  1. 组之间的坏账率差距越大越好
  2. 可以用于观察是否有跳点
  3. 可以用与找最佳切点
  4. 可以对比
# 将预测等频分箱,观测每组的区别
toad.metrics.KS_bucket(pred_train, final_data['target'], bucket=10, method = 'quantile')

32.png


八、转换评分


toad.ScoreCard

最后一步就是将逻辑回归模型转标准评分卡,支持传入逻辑回归参数,进行调参。

  • combiner: 传入训练好的 toad.Combiner 对象
  • transer: 传入先前训练的 toad.WOETransformer 对象
  • pdo、rate、base_odds、base_score: e.g. pdo=60, rate=2, base_odds=20, base_score=750 实际意义为当比率为1/20,输出基准评分750,当比率为基准比率2倍时,基准分下降60分
  • card: 支持传入专家评分卡
  • **kwargs: 支持传入逻辑回归参数(参数详见 sklearn.linear_model.LogisticRegression


card = toad.ScoreCard(
    combiner = c,
    transer = transer,
    #class_weight = 'balanced',
    #C=0.1,
    #base_score = 600,
    #base_odds = 35 ,
    #pdo = 60,
    #rate = 2
)
card.fit(final_data[col], final_data['target'])


结果输出:

ScoreCard(base_odds=35, base_score=750, card=None,
          combiner=<toad.transform.Combiner object at 0x1a2434fdd8>, pdo=60,
          rate=2,
          transer=<toad.transform.WOETransformer object at 0x1a235a5358>)

注:评分卡在 fit 时使用 WOE 转换后的数据来计算最终的分数,分数一旦计算完成,便无需 WOE 值,可以直接使用 原始数据 进行评分。

# 直接使用原始数据进行评分
card.predict(train)
#输出标准评分卡
card.export()


结果输出:

{'var_d2': {'[-inf ~ 747.0)': 65.54,
  '[747.0 ~ 782.0)': 45.72,
  '[782.0 ~ 820.0)': 88.88,
  '[820.0 ~ inf)': 168.3},
 'var_d5': {'O,nan': 185.9, 'F': 103.26, 'M': 68.76},
 'var_d7': {'LARGE FLEET OPERATOR,COMPANY,STRATEGIC TRANSPRTER,SALARIED,HOUSEWIFE': 120.82,
  'DOCTOR-SELF EMPLOYED,nan,SAL(RETIRAL AGE 60),SERVICES,SAL(RETIRAL AGE 58),OTHERS,DOCTOR-SALARIED,AGENT,CONSULTANT,DIRECTOR,MEDIUM FLEETOPERATOR,TRADER,RETAIL TRANSPORTER,MANUFACTURING,FIRST TIME USERS,STUDENT,PENSIONER': 81.32,
  'PROPRIETOR,TRADING,STRATEGIC CAPTIVE,SELF-EMPLOYED,SERV-PRIVATE SECTOR,SMALL RD TRANS.OPR,BUSINESSMAN,CARETAKER,RETAIL,AGRICULTURIST,RETIRED PERSONNEL,MANAGER,CONTRACTOR,ACCOUNTANT,BANKS SERVICE,GOVERNMENT SERVICE,ADVISOR,STRATEGIC S1,SCHOOLS,TEACHER,GENARAL RETAILER,RESTAURANT KEEPER,OFFICER,POLICEMAN,SERV-PUBLIC SECTOR,BARRISTER,Salaried,SALESMAN,RETAIL CAPTIVE,Defence (NCO),STRATEGIC S2,OTHERS NOT DEFINED,JEWELLER,SECRETARY,SUP STRAT TRANSPORT,LECTURER,ATTORNEY AT LAW,TAILOR,TECHNICIAN,CLERK,PLANTER,DRIVER,PRIEST,PROGRAMMER,EXECUTIVE ASSISTANT,PROOF READER,STOCKBROKER(S)-COMMD,TYPIST,ADMINSTRATOR,INDUSTRY,PHARMACIST,Trading,TAXI DRIVER,STRATEGIC BUS OP,CHAIRMAN,CARPENTER,DISPENSER,HELPER,STRATEGIC S3,RETAIL BUS OPERATOR,GARAGIST,PRIVATE TAILOR,NURSE': 55.79},
 'var_d11': {'N': 88.69, 'U': 23.72},
 'var_b10': {'[-inf ~ -8888.0)': 67.76,
  '[-8888.0 ~ 0.548229531)': 97.51,
  '[0.548229531 ~ inf)': 36.22},
 'var_b18': {'[-inf ~ 2)': 83.72, '[2 ~ inf)': 39.23},
 'var_b19': {'[-inf ~ -9999)': 70.78, '[-9999 ~ 4)': 97.51, '[4 ~ inf)': 42.2},
 'var_b23': {'[-inf ~ -8888)': 64.51, '[-8888 ~ inf)': 102.69},
 'var_l_20': {'[-inf ~ 0.000404297)': 78.55,
  '[0.000404297 ~ 0.003092244)': 103.85,
  '[0.003092244 ~ inf)': 36.21},
 'var_l_68': {'[-inf ~ 0.000255689)': 70.63,
  '[0.000255689 ~ 0.002045513)': 24.56,
  '[0.002045513 ~ 0.007414983000000002)': 66.63,
  '[0.007414983000000002 ~ 0.019943748)': 99.55,
  '[0.019943748 ~ inf)': 142.36}}


九、其他功能


toad.transform.GBDTTransformer

toad还支持用gbdt编码,用于gbdt + lr建模的前置。这种融合的方式来自facebook,即先使用gbdt训练输出,再将输出结果作为lr的输入训练,以此达到更好的学习效果。


gbdt_transer = toad.transform.GBDTTransformer()
gbdt_transer.fit(final_data[col+['target']], 'target', n_estimators = 10, max_depth = 2)
gbdt_vars = gbdt_transer.transform(final_data[col])
gbdt_vars.shape
(43576, 40)


好了,以上就是toad的基本用法,真的很方便、简单。在时间比较紧的时候可以使用它进行快速分析。当然,里面还有一些细节需要完善的地方,大家可以去fork然后去优化。如果自己已经写过一套分析流程的也可参考一下源码。



原创不易,欢迎点赞、在看和分享。

相关文章
|
1月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
123 70
|
2月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品库存管理的深度学习模型
使用Python实现智能食品库存管理的深度学习模型
180 63
|
2月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
72 3
|
2月前
|
机器学习/深度学习 算法 数据挖掘
线性回归模型的原理、实现及应用,特别是在 Python 中的实践
本文深入探讨了线性回归模型的原理、实现及应用,特别是在 Python 中的实践。线性回归假设因变量与自变量间存在线性关系,通过建立线性方程预测未知数据。文章介绍了模型的基本原理、实现步骤、Python 常用库(如 Scikit-learn 和 Statsmodels)、参数解释、优缺点及扩展应用,强调了其在数据分析中的重要性和局限性。
68 3
|
20天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
164 73
|
1月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
143 68
|
29天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
115 36
|
23天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
77 21
|
25天前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
74 23
|
26天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费习惯预测的深度学习模型
使用Python实现智能食品消费习惯预测的深度学习模型
103 19