暂无个人介绍
作者:戴音培机构:阿里巴巴-达摩院-Conversational AI 团队 预习时关注重点,上课时由易到难,复习时举一反三,能否让机器也按照“预习-上课-复习”的学习范式进行学习呢? 达摩院对话智能(Conversational AI)团队对这个问题进行了研究探索,先将其用在了人机对话领域,在国际知名多轮对话数据集MultiWoz上取得了最好结果。 目前对话系统的各类研究工作,大多还是集中在模型
Dialog Studio 是达摩院NLP-小蜜Conversational AI团队研发的面向开发者的智能对话开发平台,目前已经在云(多省市政务12345热线、中移动10086、金融、医疗等)、钉钉(通过钉钉官方智能工作助理服务几百万企业)、集团内(淘宝优酷等十几个BU)、淘宝天猫商家以及Lazada东南亚6国大规模应用。 为了应对疫情,基于 Dialog Studio 紧急开发的智能疫情
作者:言枫、虞晖华、蒋溢轩、蒽竹、水德、千诀 # 对话管理模型背景 从人工智能研究的初期开始,人们就致力于开发高度智能化的人机对话系统。艾伦·图灵在1950年提出图灵测试[1],认为如果人类无法区分和他对话交谈的是机器还是人类,那么就可以说机器通过了图灵测试,拥有高度的智能。第一代对话系统主要是基于规则的对话系统,例如1966年MIT开发的ELIZA系统[2]是