暂时未有相关云产品技术能力~
暂无个人介绍
知识图谱是一种用图结构表示实体及其关系的技术,通过三元组(主体-关系-客体)构建语义网络。文章以医疗领域为例,详细介绍了知识图谱的构建流程:数据预处理、实体识别、关系抽取、知识融合、存储与可视化等步骤。知识图谱可应用于智能问答、辅助诊断、药物研发等场景,其结构化特性可弥补大语言模型的不足,二者结合能提升AI系统的准确性和可解释性。文章还展示了基于大模型的医疗知识图谱构建代码示例,涵盖实体识别、关系抽取、图谱存储和智能问答等核心功能,体现了知识图谱在专业领域的实用价值。
本文介绍了决策树算法的基本原理和应用。决策树通过一系列特征判断(如西瓜的纹路、声音)进行分类,其结构包括根节点、内部节点、叶节点和分支。算法通过计算信息增益或基尼不纯度选择最佳分裂特征,构建过程采用递归方式。以鸢尾花分类为例,展示了如何用Python实现决策树模型,并分析了节点参数(样本量、基尼值、类别分布)的含义。决策树具有直观易懂的优点,但也容易过拟合。文章强调理解决策树是学习更复杂算法的基础,为后续深入讲解分裂点计算做铺垫。
SQLDatabaseToolkit 是 LangChain 框架中的一个核心组件,它不属于一个独立的软件,而是一个工具箱或工具集。它的核心目的是为大语言模型提供与 SQL 数据库进行交互的能力,将大模型的自然语言理解能力与数据库的精准数据存储和检索能力结合起来。它极大地降低了通过自然语言访问和操作 SQL 数据库的门槛,是构建基于 LLM 的数据驱动应用的关键组件之一。
文章摘要:本文系统介绍了LangChain框架的核心组件与工作机制。LangChain是一个为大语言模型应用开发设计的开源框架,包含模型层、提示管理、处理链、记忆系统和代理机制五大核心组件。重点分析了Tools系统、Memory系统和ReAct框架的协同工作机制:Tools扩展模型能力,Memory存储对话历史,ReAct框架实现智能推理与行动决策。通过多工具智能体示例,展示了三者如何协同完成复杂任务(如计算年龄平方根、网页内容提取等)。
本文探讨了医疗AI从传统规则系统向大模型的演进,重点介绍了基于RAG技术的医学知识精准问答系统与临床智能辅助决策系统(CDSS)的构建原理与应用。二者协同工作,前者提供权威知识检索,后者结合患者数据生成个性化诊疗建议,共同提升医疗效率、安全与质量,助力医生实现更精准的临床决策。
《AI图像生成中的提示词工程艺术》摘要:文章系统阐述了人工智能图像生成中的提示词工程(Prompt Engineering)技术。通过具体案例对比,展示了细微的提示词差异如何导致图像质量的巨大分野,详细解析了提示词的核心要素、语法结构及编排方法。文章提出专业级提示词的多维描述矩阵和权重控制语法,强调精准描述与AI沟通的重要性。同时指出,提示词工程是艺术与科学的结合,需要不断练习和实验才能掌握这项数字时代的关键创造力技能。
Text2SQL技术通过自然语言处理将用户查询转换为SQL语句,解决企业数据查询效率低下的痛点。该技术包含语义理解、模式对齐、SQL生成和优化等核心处理过程,核心组件包括自然语言理解模块、Schema管理模块和SQL生成模块。文章介绍了闭源和开源模型的选择策略,并提供了基于Function Calling的Text2SQL实现示例,展示如何安全高效地将自然语言转换为数据库查询。
BERT是谷歌2018年推出的革命性自然语言处理模型,采用Transformer编码器架构和预训练-微调范式。其核心创新在于双向上下文理解和掩码语言建模,能有效处理一词多义和复杂语义关系。BERT通过多层自注意力机制构建深度表示,输入融合词嵌入、位置嵌入和段落嵌入,输出包含丰富上下文信息的向量。主要应用包括文本分类、命名实体识别、问答系统等,在搜索优化、智能客服、内容推荐等领域发挥重要作用。
本文系统介绍了语言模型评测的两种主要方法:内在评测和外在评测。内在评测聚焦模型基础语言能力,核心指标困惑度(PPL)反映模型预测准确性,计算过程包括条件概率、对数概率和及指数转换。外在评测通过具体任务表现评估模型实用性,采用多层级评估策略(精确匹配、变体匹配、关键词分析和语义评估)。文章详细阐述了评测流程、指标计算方法和代码实现,强调两者结合使用的重要性:内在评测看基本功,外在评测检验实战能力。评测应持续进行,为模型选型、优化部署提供客观依据,同时关注公平性和领域适应性。
本文探讨了AI文本生成中的采样方法,这些方法决定了AI如何选择候选词来生成文本。文章介绍了两种主要方法:确定性方法(贪心算法和束搜索)和随机采样方法(基础随机采样、温度采样、Top-k采样和Top-p采样)。贪心算法每次选择概率最高的词,生成结果可靠但缺乏创意;束搜索保留多条候选路径,适合需要准确性的任务。随机采样方法则通过引入随机性增加多样性,其中温度采样通过调整温度参数控制创意的随机程度,Top-p采样则动态选择候选词集合,是目前创造性任务的首选方法。
本文探讨了检索增强生成(RAG)系统中的高效召回技术。RAG系统通过检索相关文档增强大语言模型的回答质量,但性能受制于垃圾进,垃圾出原则。为提高召回效果,文章重点分析了三种方法:Small-to-Big通过大小文本块映射兼顾检索精度与上下文丰富度;索引扩展(如HyDE)利用大模型生成假设文档来优化检索;双向改写弥合用户查询与文档表述的差异。这些方法从不同角度解决了RAG系统中的语义鸿沟、词汇不匹配等核心问题,可单独或组合使用。高效召回技术能显著提升RAG系统的回答质量和效率。
本文介绍了重排序(Rerank)技术在检索增强生成(RAG)系统中的应用。Rerank作为初始检索和最终生成之间的关键环节,通过交叉编码器对初步检索结果进行精细化排序,筛选出最相关的少量文档提供给大语言模型。相比Embedding模型,Rerank能更精准理解查询-文档的语义关系,显著提高答案质量,降低Token消耗。文章详细比较了BGE-Rerank和CohereRerank等主流模型,并通过代码示例展示了Rerank在解决歧义查询(如区分苹果公司和水果)上的优势。
使用Gradio构建的一个演示界面,该界面将展示如何使用Qwen-Turbo生成提示词,然后使用Qwen-Image生成图像。 我们将按照之前的设计,将流程分为两个主要步骤:先生成提示词,然后生成图像。在提示词生成成功之前,直接生成图像将会给出提示先生成提示词。
因为用户的自然提问方式与知识库的客观组织方式天生存在不可调和的差异。如果不进行改写,直接将原始查询用于检索,就如同让一个不懂检索的人自己去漫无目的地查字典,结果往往是找不到、找错了或找到的没法用。Query 改写是保障 RAG 系统可靠性、准确性和可用性的“第一道防线”和“核心基础设施”。它通过一系列技术手段,将用户的意图“翻译”成检索器能高效理解的语言,从而确保后续步骤能在一个高质量的基础上进行。
本文介绍了一个基于Gradio和阿里云通义千问Qwen-Image模型的文生图应用。该应用通过简洁的Web界面实现文本生成图像功能,支持多种风格(3D卡通、动漫、油画等)和尺寸选择,并包含负面提示词功能。文章详细解析了代码结构,包括API调用封装、参数映射、错误处理等核心功能模块,同时提供了丰富的示例提示词和生成效果展示。该工具适合探索AI图像生成能力,通过调整提示词和参数可优化生成效果。
本文详细介绍了RAG(检索增强生成)系统中的文本切片策略。RAG切片是将长文档分割为语义完整的小块,以便AI模型高效检索和使用知识。文章分析了五种切片方法:改进固定长度切片(平衡效率与语义)、语义切片(基于嵌入相似度)、LLM语义切片(利用大模型智能分割)、层次切片(多粒度结构)和滑动窗口切片(高重叠上下文)。作者建议根据文档类型和需求选择策略,如通用文档用固定切片,长文档用层次切片,高精度场景用语义切片。切片质量直接影响RAG系统的检索效果和生成答案的准确性。
本文深入探讨了如何利用LangChain框架实现RAG(检索增强生成)架构,构建智能问答系统。文章首先介绍了RAG技术解决大模型知识更新和准确性问题的原理,以及LangChain作为开发框架提供的模块化组件。详细解析了LangChain的核心模块(模型、提示、索引、链等)和四种ChainType(stuff、map_reduce、refine、map_rerank)的特点与适用场景。通过一个完整的代码示例,展示了如何结合DeepSeek模型和FAISS向量数据库处理PDF文档,实现本地知识库问答功能
RAG(检索增强生成)是一种结合信息检索与大型语言模型的技术,旨在解决LLM的幻觉问题。其核心流程包括:离线处理阶段(知识库构建)和在线处理阶段(用户查询应答)。通过将外部知识源转换为向量存入数据库,当用户提问时,系统会检索相关内容并增强提示,再由LLM生成准确答案。RAG技术显著提升了AI在专业领域的可靠性,适用于智能客服、企业知识管理、内容创作等场景。尽管面临检索精度、多模态处理等挑战,RAG仍是AI实用化的重要突破方向。
本文介绍了如何利用本地化部署的轻量级文本嵌入模型实现语义搜索。重点讲解了两种高效模型paraphrase-MiniLM-L6-v2和all-MiniLM-L6-v2的特点,它们通过知识蒸馏技术实现高质量语义表示,且体积小、速度快。文章详细演示了从ModelScope下载模型到本地、使用sentence-transformers库生成文本向量、构建FAISS索引进行相似性搜索的完整流程。通过Python代码示例展示了如何实现文档添加、查询处理和索引持久化功能,为构建本地化的语义搜索系统提供了实用解决方案。
向量数据库是专为存储和检索高维向量设计的新型数据库,通过Embedding技术将文本、图像等非结构化数据转化为向量,利用近似最近邻(ANN)算法实现语义级相似性搜索,广泛应用于AI推荐、语义搜索与智能问答,是大模型时代的关键基础设施。
时间序列模型是分析和预测时序数据的核心工具,广泛应用于销量预测、趋势分析和异常检测。本文深入浅出地讲解其基本概念、组成成分(趋势、季节性、残差)、平稳性处理及主流模型如Holt-Winters和ARIMA,并结合代码实例展示建模全过程,帮助读者掌握从数据预处理到预测可视化的关键技能,实现数据驱动的科学决策。
N-gram是一种基于上下文的统计语言模型,通过前N-1个词预测当前词的概率,广泛应用于文本生成、输入法预测、语音识别等领域,具有简单高效、可解释性强的优点,是自然语言处理的基础技术之一。
Embedding是一种将词语、图像等信息转化为低维稠密向量的技术,使计算机能捕捉语义关系。不同于传统One-Hot编码,Embedding通过空间距离表达语义相似性,如“国王-男人+女人≈王后”,广泛应用于NLP、推荐系统与大模型中,是AI理解世界的基石。
Gensim是Python中强大的自然语言处理库,擅长从大量中文文本中自动提取主题、生成词向量并计算文档相似度。它支持LDA、Word2Vec等模型,结合jieba分词可有效实现文本预处理、主题建模与语义分析,适用于新闻分类、信息检索等任务,高效且易于扩展。
Gradio是一个快速构建机器学习演示界面的Python库,能够将需要数天开发工作的模型展示缩短为几分钟的脚本编写。它通过简单的Python代码即可生成完整的Web应用界面,支持文本、图像、音频等多种交互组件,适用于模型展示、教学演示和原型测试等场景。文章详细介绍了Gradio的核心功能、基础语法和组件使用方法,并通过情感分析和聊天机器人两个实际案例展示了如何快速部署AI模型交互界面。Gradio大幅降低了将模型转化为可交互应用的门槛,使开发者能更专注于模型本身而非界面开发。
ModelScope是由阿里巴巴达摩院推出的AI模型托管与服务平台,被称作AI模型的Github。它汇集了自然语言处理、计算机视觉、语音识别等领域的数千个高质量预训练模型,大幅降低了AI应用开发门槛。平台提供简化的Pipeline API,只需几行代码即可调用模型,并支持模型微调。与通义千问等单一AI产品不同,ModelScope是一个开放的模型生态系统,覆盖更广泛的应用场景。通过实际案例展示了其在人像卡通化、抠图、天空替换等方面的应用效果。
本文介绍如何使用字节跳动的AI编程工具Trae与阿里通义千问Qwen-Turbo模型,快速生成一个智能问答系统。通过图文结合方式,演示从环境搭建、指令生成到界面优化的全过程,涵盖前后端代码自动生成、模型调用封装及交互优化技巧,展现AI辅助开发的高效与趣味,助力开发者提升生产力。
Pandas是Python核心数据分析库,提供Series、DataFrame等灵活数据结构,支持高效的数据读写、清洗、筛选、合并与统计操作,广泛应用于数据处理与分析场景。
本文深入浅出地讲解Prompt原理及其与大模型的关系,系统介绍Prompt的核心要素、编写原则与应用场景,帮助用户通过精准指令提升AI交互效率,释放大模型潜能。
本文介绍如何通过Ollama本地部署DeepSeek大模型,结合FastAPI实现API接口调用。涵盖Ollama安装、路径迁移、模型下载运行及REST API封装全过程,助力快速构建可扩展的AI应用服务。
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
发表了文章
2025-12-03
发表了文章
2025-12-02
发表了文章
2025-12-01
发表了文章
2025-11-30
发表了文章
2025-11-29
发表了文章
2025-11-28
发表了文章
2025-11-27
发表了文章
2025-11-26
发表了文章
2025-11-24
发表了文章
2025-11-23
发表了文章
2025-11-22
发表了文章
2025-11-21
发表了文章
2025-11-20
发表了文章
2025-11-19
发表了文章
2025-11-18
发表了文章
2025-11-16
发表了文章
2025-11-15
发表了文章
2025-11-14
发表了文章
2025-11-13
发表了文章
2025-11-12