深度学习Caffe框架中,Solver文件和Net文件分别是什么,怎么编写?
net 网络模型:name: 'LeNet'layer { name: 'data' type: 'Input' top: 'data' input_param { shape: { dim: 64 dim: 1 dim: 28 dim: 28 } }}layer { name: 'conv1' type: 'Convolution' bottom: 'data' top: 'conv1' param {
lr_mult: 1
} param {
lr_mult: 2
} convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: 'xavier'
}
bias_filler {
type: 'constant'
}
}}layer { name: 'pool1' type: 'Pooling' bottom: 'conv1' top: 'pool1' pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}}layer { name: 'conv2' type: 'Convolution' bottom: 'pool1' top: 'conv2' param {
lr_mult: 1
} param {
lr_mult: 2
} convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: 'xavier'
}
bias_filler {
type: 'constant'
}
}}layer { name: 'pool2' type: 'Pooling' bottom: 'conv2' top: 'pool2' pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}}layer { name: 'ip1' type: 'InnerProduct' bottom: 'pool2' top: 'ip1' param {
lr_mult: 1
} param {
lr_mult: 2
} inner_product_param {
num_output: 500
weight_filler {
type: 'xavier'
}
bias_filler {
type: 'constant'
}
}}layer { name: 'relu1' type: 'ReLU' bottom: 'ip1' top: 'ip1'}layer { name: 'ip2' type: 'InnerProduct' bottom: 'ip1' top: 'ip2' param {
lr_mult: 1
} param {
lr_mult: 2
} inner_product_param {
num_output: 10
weight_filler {
type: 'xavier'
}
bias_filler {
type: 'constant'
}
}}layer { name: 'prob' type: 'Softmax' bottom: 'ip2' top: 'prob'}
solver:
The train/test net protocol buffer definition
net: 'examples/mnist/lenet_train_test.prototxt'
test_iter specifies how many forward passes the test should carry out.
In the case of MNIST, we have test batch size 100 and 100 test iterations,
covering the full 10,000 testing images.
test_iter: 100
Carry out testing every 500 training iterations.
test_interval: 500
The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01momentum: 0.9weight_decay: 0.0005
The learning rate policy
lr_policy: 'inv'gamma: 0.0001power: 0.75
Display every 100 iterations
display: 100
The maximum number of iterations
max_iter: 10000
snapshot intermediate results
snapshot: 5000snapshot_prefix: 'examples/mnist/lenet'
solver mode: CPU or GPU
solver_mode: CPU
赞1
踩1