暂无个人介绍
作为整个团队的匠心之作,Milvus 2.3.0 历经 8 个月的设计与打磨,无论在新功能、应用场景还是可靠度方面都有不小的提升。
如何利用人工智能技术(例如开源 AI 向量数据库 Milvus 和 Hugging Face 模型)寻找与自己穿搭风格相似的明星。
如何让你的大模型变得更强?如何确定其获取信息来源的准确性?想要回答这两个问题,就不得不提到 RAG。
大模型时代的到来使得 AI 应用开发变得更加轻松、省时,尤其是在 CVP Stack 的范式下,开发者甚至可以用一个周末的时间做出一个完整的应用程序。
向量数据库不仅承担着“大模型记忆体”的职能,也是 AIGC 应用开发新范式的重要组成部分。
AIGC 人狂喜!最近,Meta AI 发布了大语言模型 Llama2,为大模型的开发者注入了一剂强心针,因为无论从其灵活性、竞争力还是便捷性来看,都有不小的优势。
近期,Milvus 上线了 2.2.12 版本,此次更新不仅一次性增加了支持 Restful API、召回原始向量、json_contains 函数这三大特性,还优化了 standalone 模式下的 CPU 使用、查询链路等性能,用一句话总结就是:低门槛、高可用、强性能。
LLMs 时代之下,CVP Stack 必不可少。
让更多的开发者可以在不考虑预算限制的情况下畅用云原生向量数据库。
如何使用私有数据最大化发挥 LLM 的能力?LlamaIndex 可以解决这一问题。LlamaIndex 是一个简单、灵活、集中的接口,可用于连接外部数据和 LLMs。
“可以将 LlamaIndex 视为外部数据和 LLM 连接在一起的黑匣子。”在 Zilliz 组织的网络研讨会中,LlamaIndex 的联合创始人兼首席执行官 Jerry Liu 曾这样说道。
LlamaIndex 作为一个专为构建 LLM 应用设计的新工具,它可以为用户抽象出上述框架中的内容。
如何从零搭建一个 LLM 应用?不妨试试 LangChain + Milvus 的组合拳。 作为开发 LLM 应用的框架,LangChain 内部不仅包含诸多模块,而且支持外部集成;Milvus 同样可以支持诸多 LLM 集成,二者结合除了可以轻松搭建一个 LLM 应用,还可以起到强化 ChatGPT 功能和效率的作用。
GPTCache 是一个用于存储 LLM 响应的语义缓存层。它可以为 LLM 相关应用构建相似语义缓存,当相似的问题请求多次出现时,可以直接从缓存中获取,在减少请求响应时间的同时也降低了 LLM 的使用成本。
AIGC 时代,提高大模型应用性能的一个关键手段就是将大语言模型(LLM)和外部数据相结合。具体而言就是在 LLM 中接入现成的数据集,并要求 AI 应用能够记住用户的对话,通过“反思”对话上下文生成“新记忆”。