游客ieum5w3qinjwm_个人页

个人头像照片 游客ieum5w3qinjwm
个人头像照片
0
6
0

个人介绍

暂无个人介绍

擅长的技术

  • 自动驾驶
  • 架构师
  • SoC
  • 芯片
  • 安全
  • 图形学
  • 项目管理
  • 异构计算
  • 域名解析
获得更多能力
通用技术能力:

暂时未有相关通用技术能力~

云产品技术能力:

暂时未有相关云产品技术能力~

阿里云技能认证

详细说明
  • 提交了问题 2023-07-02

    提供能在其他服务器ubuntu环境下跑通的脚本,亲测有效

暂无更多信息
正在加载, 请稍后...
暂无更多信息
  • 提交了问题 2023-07-02

    提供能在其他服务器ubuntu环境下跑通的脚本,亲测有效

  • 回答了问题 2023-07-02

    PTTS-basemodel微调报错

    亲测只有model_revision = 'v1.0.4'才能正常跑通,kantts必须安装0.0.1 kwargs = dict( model=pretrained_model_id, # 指定要finetune的模型 model_revision = 'v1.0.4', # 就是这里,只有改成1.0.4才顺利通过 work_dir=pretrain_work_dir, # 指定临时工作目录 train_dataset=dataset_id, # 指定数据集id train_type=train_info # 指定要训练类型及参数 )
    踩0 评论0
  • 回答了问题 2023-07-02

    使用SambertHifigan个性化语音合成-中文-预训练-16k报错,完全按照模型介绍中的操作

    提供能在其他服务器ubuntu环境下跑通的脚本,亲测有效 环境如下: Ubuntu 20.04 + Python3.8 NVIDIA-SMI 530.30.02 Driver Version: 530.30.02 CUDA Version: 12.1 #!/bin/bash # 设置显存分片大小,防止OOM爆显存 cat>/etc/profile.d/proxy.sh # 接下来用这个python脚本运行测试一下环境是否ok,如果没报错就应该是ok了 from modelscope.tools import run_auto_label from modelscope.metainfo import Trainers from modelscope.trainers import build_trainer from modelscope.utils.audio.audio_utils import TtsTrainType import os from modelscope.models.audio.tts import SambertHifigan from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks import torch print(torch.__version__) print(torch.cuda.is_available()) from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks text = '待合成文本' model_id = 'damo/speech_sambert-hifigan_tts_zh-cn_16k' sambert_hifigan_tts = pipeline(task=Tasks.text_to_speech, model=model_id) output = sambert_hifigan_tts(input=text, voice='zhitian_emo') wav = output[OutputKeys.OUTPUT_WAV] with open('output.wav', 'wb') as f: f.write(wav) 最后需要特别注意的是,预训练model_revision = 'v1.0.4'才可以 kwargs = dict( model=pretrained_model_id, # 指定要finetune的模型 model_revision = 'v1.0.4', # 就是这里,只有改成1.0.4才顺利通过 work_dir=pretrain_work_dir, # 指定临时工作目录 train_dataset=dataset_id, # 指定数据集id train_type=train_info # 指定要训练类型及参数 )
    踩0 评论1
  • 回答了问题 2023-07-02

    kantts 这个模型是什么东西啊,运行会报错

    测试只能用kantts==0.0.1 pip install tts-autolabel kantts==0.0.1 -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
    踩0 评论0
  • 回答了问题 2023-07-02

    modelscope1.6.1的环境,本地报错似乎提示使用正确 modelscope版本

    提供能在其他服务器ubuntu环境下跑通的脚本,亲测有效 环境如下: Ubuntu 20.04 + Python3.8 +---------------------------------------------------------------------------------------+ | NVIDIA-SMI 530.30.02 Driver Version: 530.30.02 CUDA Version: 12.1 | |-----------------------------------------+----------------------+----------------------+ ‘’‘ #!/bin/bash 设置显存分片大小,防止OOM爆显存 cat>/etc/profile.d/proxy.sh 更新以及安装必须的软件 apt update apt upgrade -y apt list --upgradable -a apt-get install libsndfile1 sox nano wget curl git zip -y apt autoclean -y apt autoremove -y 登录时使能设置环境变量 source /etc/profile.d/proxy.sh 克隆官方基础库,魔法自备 git clone https://github.com/modelscope/modelscope.git 安装Audio所必须的包,亲测有效 cd modelscope python -m pip install --upgrade pip pip install -r requirements/tests.txt pip install -r requirements/framework.txt -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html pip install -r requirements/audio.txt -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html pip install -r requirements/nlp.txt -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html pip install . pip install tts-autolabel -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html pip install typeguard==2.13.3 pydantic==1.10.10 numpy==1.21.6 kantts==0.0.1 -y pip uninstall funasr -y 下载nltk包到根目录 cd ~ wget https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/TTS/download_files/nltk_data.zip unzip nltk_data.zip 接下来就可以按照描述中的步骤进行体验 ‘’‘ ‘’‘ 接下来用这个python脚本运行测试一下环境是否ok,如果没报错就应该是ok了 from modelscope.tools import run_auto_label from modelscope.metainfo import Trainers from modelscope.trainers import build_trainer from modelscope.utils.audio.audio_utils import TtsTrainType import os from modelscope.models.audio.tts import SambertHifigan from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks import torch print(torch.version) print(torch.cuda.is_available()) from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks text = '待合成文本' model_id = 'damo/speech_sambert-hifigan_tts_zh-cn_16k' sambert_hifigan_tts = pipeline(task=Tasks.text_to_speech, model=model_id) output = sambert_hifigan_tts(input=text, voice='zhitian_emo') wav = output[OutputKeys.OUTPUT_WAV] with open('output.wav', 'wb') as f: f.write(wav) ‘’‘ 最后需要特别注意的是,预训练model_revision = 'v1.0.4'才可以 kwargs = dict( model=pretrained_model_id, # 指定要finetune的模型 model_revision = 'v1.0.4', # 就是这里,只有改成1.0.4才顺利通过 work_dir=pretrain_work_dir, # 指定临时工作目录 train_dataset=dataset_id, # 指定数据集id train_type=train_info # 指定要训练类型及参数 )
    踩0 评论0
  • 回答了问题 2023-07-02

    基于PTTS-basemodel微调时报错InvalidProtobuf: [ONNXRuntime

    提供能在其他服务器ubuntu环境下跑通的脚本,亲测有效 环境如下: Ubuntu 20.04 + Python3.8 +---------------------------------------------------------------------------------------+ | NVIDIA-SMI 530.30.02 Driver Version: 530.30.02 CUDA Version: 12.1 | |-----------------------------------------+----------------------+----------------------+ #!/bin/bash 设置显存分片大小,防止OOM爆显存 cat>/etc/profile.d/proxy.sh 更新以及安装必须的软件 apt update apt upgrade -y apt list --upgradable -a apt-get install libsndfile1 sox nano wget curl git zip -y apt autoclean -y apt autoremove -y 登录时使能设置环境变量 source /etc/profile.d/proxy.sh 克隆官方基础库,魔法自备 git clone https://github.com/modelscope/modelscope.git 安装Audio所必须的包,亲测有效 cd modelscope python -m pip install --upgrade pip pip install -r requirements/tests.txt pip install -r requirements/framework.txt -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html pip install -r requirements/audio.txt -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html pip install -r requirements/nlp.txt -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html pip install . pip install tts-autolabel -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html pip install typeguard==2.13.3 pydantic==1.10.10 numpy==1.21.6 kantts==0.0.1 -y pip uninstall funasr -y 下载nltk包到根目录 cd ~ wget https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/TTS/download_files/nltk_data.zip unzip nltk_data.zip 接下来就可以按照描述中的步骤进行体验 接下来用这个python脚本运行测试一下环境是否ok,如果没报错就应该是ok了 from modelscope.tools import run_auto_label from modelscope.metainfo import Trainers from modelscope.trainers import build_trainer from modelscope.utils.audio.audio_utils import TtsTrainType import os from modelscope.models.audio.tts import SambertHifigan from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks import torch print(torch.version) print(torch.cuda.is_available()) from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks text = '待合成文本' model_id = 'damo/speech_sambert-hifigan_tts_zh-cn_16k' sambert_hifigan_tts = pipeline(task=Tasks.text_to_speech, model=model_id) output = sambert_hifigan_tts(input=text, voice='zhitian_emo') wav = output[OutputKeys.OUTPUT_WAV] with open('output.wav', 'wb') as f: f.write(wav) 最后需要特别注意的是,预训练model_revision = 'v1.0.4'才可以 kwargs = dict( model=pretrained_model_id, # 指定要finetune的模型 model_revision = 'v1.0.4', # 就是这里,只有改成1.0.4才顺利通过 work_dir=pretrain_work_dir, # 指定临时工作目录 train_dataset=dataset_id, # 指定数据集id train_type=train_info # 指定要训练类型及参数 )
    踩0 评论0
正在加载, 请稍后...
滑动查看更多
正在加载, 请稍后...
暂无更多信息