暂时未有相关云产品技术能力~
LLM/LLMOps,公众号:吃果冻不吐果冻皮,LLM教程:https://github.com/liguodongiot/llm-action
场景一:过滤出关键字附近的日志 因为通常时候我们用grep拿到的日志很少,我们需要查看附近的日志. 套路: 按行号查看,过滤出关键字附近的日志 首先,得到关键日志的行号,
一、什么是 Dockerfile? Dockerfile 是一个文本文件,其内包含了一条条的指令,每一条指令构建一层,因此每一条指令的内容,就是描述该层应当如何构建。有了Dockerfile之后,当我们需要定制自己额外的需求时,只需在Dockerfile上添加或者修改指令,重新生成镜像即可,省去了敲命令的麻烦。 二、Dockerfile文件格式
1、场景描述 我们经常在项目中,会看到如下所示if-else过多的代码。如果条件过多的话逻辑就比较混乱,也容易出错。如果新增一种业务,又要来增加一个if else,即难以维护,阅读性也很差。
过去的二十年让我们对软件开发有了一些深刻的理解。其中很大一部分原因是 DevOps 的出现及其在整个行业中的广泛运用。 领先的软件公司都遵循相同的模式:首先是软件开发中的快速迭代,然后是持续集成、持续交付、持续部署。每个人工制品都要经过测试,看其提供价值的能力如何,而且软件始终要处于就绪的状态,并且通过自动化方法进行部署。 机器学习这个领域虽不同于传统的软件开发,但我们也能从软件开
时间复杂度 时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当程序所处理的问题规模扩大后,程序需要的时间长度对应增长得有多快。 也就是说,对于某一个程序,其处理某一个特定数据的效率不能衡量该程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。 不管数据有多大,程序处理所花的时间始终是那么多的,我们就说这个程序很好,具O(1)O(1)O(1)的时间复杂度,也称常数级复杂度;
Easy Rules是一个简单而强大的Java规则引擎,提供以下功能: 轻量级框架和易于学习的API 基于POJO的开发与注解的编程模型 定义抽象的业务规则并轻松应用它们 支持从简单规则创建组合规则的能力 支持使用表达式语言(如MVEL和SpEL)定义规则的能力
实施数据科学项目不是一件简单的任务。至少,数据分析工作流程必须定期运行,以产生最新的结果。比如,一份上周数据的报告,或者由于概念发生变化而重新训练机器学习模型。在某些情况下,这类工作流的输出需要作为API公开,例如,一个经过训练的机器学习模型,通过点击REST端点来生成预测结果。 这就需要开发实践允许工作流(也称为pipeline)是可重现、可重复,并且可以很容易地部署。近年来,涌现了大量开源工作流管理工具。由于有太多的选择,团队很难选择最适合他们需求的工具,本文回顾了13种开源工作流管理工具。
实施数据科学项目不是一件简单的任务。至少,数据分析工作流程必须定期运行,以产生最新的结果。比如,一份上周数据的报告,或者由于概念发生变化而重新训练机器学习模型。在某些情况下,这类工作流的输出需要作为API公开,例如,一个经过训练的机器学习模型,通过点击REST端点来生成预测结果。 这就需要开发实践允许工作流(也称为pipeline)是可重现、可重复,并且可以很容易地部署。近年来,涌现了大量开源工作流管理工具。由于有太多的选择,团队很难选择最适合他们需求的工具,本文回顾了13种开源工作流管理工具。
实施数据科学项目不是一件简单的任务。至少,数据分析工作流程必须定期运行,以产生最新的结果。比如,一份上周数据的报告,或者由于概念发生变化而重新训练机器学习模型。在某些情况下,这类工作流的输出需要作为API公开,例如,一个经过训练的机器学习模型,通过点击REST端点来生成预测结果。 这就需要开发实践允许工作流(也称为pipeline)是可重现、可重复,并且可以很容易地部署。近年来,涌现了大量开源工作流管理工具。由于有太多的选择,团队很难选择最适合他们需求的工具,本文回顾了13种开源工作流管理工具。