hadoop爱好者
在做考试系统需求时,后台题库系统提供录入题目的功能。在录入题目的时候,由于题目来源广泛,且参与录入题目的人有多位,因此容易出现录入重复题目的情况。所以需要实现语句相似度分析功能,从而筛选出重复的题目并人工处理之。
本文语料库特指文本分类语料库,对应IDataSet接口。而文本分类语料库包含两个概念:文档和类目。一个文档只属于一个类目,一个类目可能含有多个文档。比如搜狗文本分类语料库迷你版.zip,下载前请先阅读搜狗实验室数据使用许可协议。
TextRank是在Google的PageRank算法启发下,针对文本里的句子设计的权重算法,目标是自动摘要。它利用投票的原理,让每一个单词给它的邻居(术语称窗口)投赞成票,票的权重取决于自己的票数。这是一个“先有鸡还是先有蛋”的悖论,PageRank采用矩阵迭代收敛的方式解决了这个悖论。
这是另一套基于CRF的词法分析系统,类似感知机词法分析器,提供了完善的训练与分析接口。 CRF的效果比感知机稍好一些,然而训练速度较慢,也不支持在线学习。 默认模型训练自OpenCorpus/pku98/199801.txt,随hanlp 1.6.2以上版本发布。
本篇分享的依然是关于hanlp的分词使用,文章内容分享自 gladosAI 的博客,本篇文章中提出了一个问题,hanlp分词影响了实验判断结果。为何会如此,不妨一起学习一下 gladosAI 的这篇文章。
本“新词发现”模块基于信息熵和互信息两种算法,可以在无语料的情况下提取一段长文本中的词语,并支持过滤掉系统中已存在的“旧词”,得到新词列表。
这篇文章主要分享的是hanlp自然语言处理源码的下载,数据集的下载,以及将让源代码中的demo能够跑通。Hanlp安装包的下载以及安装其实之前就已经有过分享了。本篇文章主要还是备忘之用,同时算是给新手朋友的一些参考吧!
本文旨在介绍如何利用HanLP训练分词模型,包括语料格式、语料预处理、训练接口、输出格式等。 目前HanLP内置的训练接口是针对一阶HMM-NGram设计的,另外附带了通用的语料加载工具,可以通过少量代码导出供其他训练工具使用的特定格式(如CRF++)。
Hanlp作为一款重要的中文分词工具,在GitHub的用户量已经非常之高,应该可以看得出来大家对于hanlp这款分词工具还是很认可的。本篇继续分享一篇关于hanlp的使用实例即Python调用hanlp进行中文实体识别。
大数据Hadoop应用开发技术正可谓如火如荼推进中,以为大数据已经不仅仅是局限在互联网领域,而是已经被上升到了国家战略的高度层面。大数据正在深刻影响和改变我们的日常生活和工作方式。
过程分析 1.添加新词需要确定无缓存文件,否则无法使用成功,因为词典会优先加载缓存文件 2.再确认缓存文件不在时,打开本地词典按照格式添加自定义词汇。 3.调用分词函数重新生成缓存文件,这时会报一个找不到缓存文件的异常,不用管,因为加载词典进入内存是会优先加载缓存,缓存不在当然会报异常,然后加载词典生成缓存文件,最后处理字符进行分词就会发现新添加的词汇可以进行分词了。
本篇分享hadoop的安装步骤依然是也DKhadoop为例。DKhadoop的安装可以说真的是很简单。五月份的时候跟和大二、大三的几个学生聊hadoop的事情,他们吐槽点都集中在环境的搭建安装。一次性安装成功这种事情是不存在的,折腾到崩溃却是事实。
在使用Hanlp词典进行分词的时候,会出现分词不准的情况,原因是内置词典中并没有收录当前这个词,也就是我们所说的未登录词,只要把这个词加入到内置词典中就可以解决类似问题,如何操作呢,
虚拟机以及Linux系统安装在之前的两篇分享中已经详细的介绍了方法,并且每一步的都配图了。如果有朋友还是看不懂,那我也爱莫能助了。本篇主要就hadoop服务器操作系统配置进行详细说明,hadoop安装会在下一篇文章中详细的介绍。
问题 因为需要加载一个 近 1G 的字典到Hanlp中,一开始使用了CustomDictionay.add() 方法来一条条的加载,果然到了中间,维护DoubleArraTre 的成本太高,添加一个节点,都会很长时间,本来时间长一点没有关系,只要训练出.bin 的文件,第二次加载就会很快,然而作为以空间换时间的DAT结构,内存消耗很大,预料之内的出现了 1 out of memory: heap size 的问题。
本篇分享一个使用hanlp分词的操作小案例,即在spark集群中使用hanlp完成分布式分词的操作,文章整理自【qq_33872191】的博客,感谢分享!以下为全文: 分两步: 第一步:实现hankcs.
此文整理的基础是建立在hanlp较早版本的基础上的,虽然hanlp的最新1.7版本已经发布,但对于入门来说差别不大!分享一篇比较早的“旧文”给需要的朋友!
这是一个基于CRF的中文依存句法分析器,内部CRF模型的特征函数采用 双数组Trie树(DoubleArrayTrie)储存,解码采用特化的维特比后向算法。相较于《最大熵依存句法分析器的实现》,分析速度翻了一倍,达到了1262.8655 sent/s
DKM 是DKHadoop管理平台。作为大数据平台端到端Apache Hadoop 的管理应用,DKM 对 DKH 的每个部件都提供了细粒度的可视化和控制。通过DKM ,运维人员是可以提高集群的性能,提升服务质量,提高合规性并降低管理成本。
文本挖掘是抽取有效、新颖、有用、可理解的、散布在文本文件中的有价值知识,并且利用这些知识更好地组织信息的过程。对于文本来说,由于语言组织形式各异,表达方式多样,文本里面提到的很多要素,如人名、手机号、组织名、地名等都称之为实体。
关于hadoop的分享此前一直都是零零散散的想到什么就写什么,整体写的比较乱吧。最近可能还算好的吧,毕竟花了两周的时间详细的写完的了hadoop从规划到环境安装配置等全部内容。写过程不是很难,最烦的可能还是要给每一步配图,工程量确实比较大。
谈起简繁转换,许多人以为是小意思,按字转换就行了。事实上,汉语历史悠久,地域复杂,发展至今在字符级别存在“一简对多繁”和“一繁对多简”,在词语级别上存在“简繁分歧词”,在港澳台等地则存在“字词习惯不同”的情况。
前两天看到有人留言问在什么情况下需要部署hadoop,我给的回答也很简单,就是在需要处理海量数据的时候才需要考虑部署hadoop。关于这个问题在很早之前的一篇分享文档也有说到这个问题,数据量少的完全发挥不了hadoop的优势,所以也没必要部署。
如果想要只获取词性也是可以的,因为原分词器返回的是Java中的ArrayList属性,list中的每个单元都是一个term类,因此我们也可以通过获取term中的word字段来直接获取词语,或者nature属性,直接获取词性。这一特征,我们在之后也会用到。
Hadoop分布式集群环境搭建是每个入门级新手都非常头疼的事情,因为你可能花费了很久的时间在搭建运行环境,最终却不知道什么原因无法创建成功。但对新手来说,运行环境搭建不成功的概率还蛮高的。
HanLP中的词语提取是基于互信息与信息熵。想要计算互信息与信息熵有限要做的是 文本分词进行共性分析。在作者的原文中,有几个问题,为了便于说明,这里首先给出短语提取的原理。在文末在给出pyhanlp的调用代码。
自然语言处理是一门计算机科学、人工智能以及语言学的交叉学科。虽然语言只是人工智能的一部分(人工智能还包括计算机视觉等),但它是非常独特的一部分。这个星球上有许多生物拥有超过人类的视觉系统,但只有人类才拥有这么高级的语言。
对于词典,直接加载文本会很慢,所以HanLP对于文本文件做了一些预处理,生成了后缀名为.txt.bin的二进制文件。
本文介绍一种简洁优雅的多标准中文分词方案,可联合多个不同标准的语料库训练单个模型,同时输出多标准的分词结果。通过不同语料库之间的迁移学习提升模型的性能,在10个语料库上的联合试验结果优于绝大部分单独训练的模型。模型参数和超参数全部共享,复杂度不随语料库种类增长。
Hanlp作为一款重要的分词工具,本月初的时候看到大快搜索发布了hanlp的1.7版本,新增了文本聚类、流水线分词等功能。关于hanlp1.7版本的新功能,后面有使用的到时候在给大家分享
Hanlp是由大快搜索高级研究员何晗主导开发的完全开源的项目,具有精度高、速度快、内存省的特点。
大数据在政务当中的应用对于提高问题解决的效率可谓大有帮助,但政务大数据平台的应用开发远不止提高问题解决效率这么简单。当然,作为大数据平台应用的开发者来说,我们要做的是还是从底层的技术层面做好解决方案。
Hanlp是由一系列模型与算法组成的javag工具包,目标是普及自然语言处理再生环境中的应用。有很多人在安装hanlp的时候会遇到安装失败的情况,下面就是某大神的分享的在python环境中安装失败的解决方法,大家可以借鉴学习以下!
DKHadoop安装是总体很简单,跟大家所了解的hadoop版本安装差异比较大,这个是发行版是已经做了深度集成,基本可以“一键傻瓜式安装”,当然,更为具体的、详细的安装也有分享过文章的,可以在系列文章里看一下的
前几天看了大快的举办的大数据论坛峰会的现场直播,惊喜的是hanlp2.0版本发布。Hanlp2.0版本将会支持任意多的语种,感觉还是挺好的!不过更多关于hanlp2.0的信息,可能还需要过一段时间才能看到,只能等一下了!下面分享一篇大神的文章,是关于在ubuntu下使用pycharm调用hanlp的实验。
在上一篇的分享文章中我是给大家分享了运行部署hadoop的一些安装准备工作,这篇接上一篇继续为大家分享一些个人的学习经验总结。我学习用的是大快发行版DKHadoop,所以所有的经验分享都是以DKHadoop为基础,这里要先说明一下。
中文分词中有众多分词工具,如结巴、hanlp、盘古分词器、庖丁解牛分词等;其中庖丁解牛分词仅仅支持java,分词是HanLP最基础的功能,HanLP实现了许多种分词算法,每个分词器都支持特定的配置。接下来我将介绍如何配置Hanlp来开启自然语言处理之旅,每个工具包都是一个非常强大的算法集合,所以小编以后将花一些时间去看看里面源码如何。
这篇文章里面没有写维特比分词算法的详细过程,以及转移矩阵的生成过程,以后有时间再补上。看源码,对隐马模型的理解又加深了一点,感受到了理论的东西如何用代码一步步来实现。由于我也是初学,对源码的理解不够深入或者存在一些偏差,欢迎批评指正。
大数据技术的应用正在潜移默化改变着我们的日常生活习惯和工作方式,很多看起来有点“不可思议”的事情也渐渐被我们“习以为常”。大数据可能在国内的起步较晚,但我们可能却是对大数据应用最好的了代表了。前些时候有分享了一个大数据技术在智慧人社上面的应用案例,最近也一直看一些人力资源方面大数据解决方案的案例,比较集中的都是围绕智慧人社的。
学习hadoop已经有很长一段时间了,好像是二三月份的时候朋友给了一个国产Hadoop发行版下载地址,因为还是在学习阶段就下载了一个三节点的学习版玩一下。在研究、学习hadoop的朋友可以去找一下看看
信息质量模型在互联网行业和互联网数据化运营中也是有着广泛基础性应用的。具体来说,电商行业和电商平台连接买卖双方最直接、最关键的纽带就是海量的商品目录、商品Offer、商品展示等,无论是B2C(如当当网、凡客网),还是C2C(如淘宝网),或者是B2B(如阿里巴巴),只要是以商业为目的,以交易为目的的,都需要采用有效手段去提升海量商业信息(商品目录、商品Offer、商品展示等)的质量和结构,从而促进交易。
图像的膨胀(Dilation)和腐蚀(Erosion)是两种基本的形态学运算,主要用来寻找图像中的极大区域和极小区域。其中膨胀类似于“领域扩张”,将图像中的高亮区域或白色部分进行扩张,其运行结果图比原图的高亮区域更大;腐蚀类似于“领域被蚕食”,将图像中的高亮区域或白色部分进行缩减细化,其运行结果图比原图的高亮区域更小。
文本聚类简单点的来说就是将文本视作一个样本,在其上面进行聚类操作。但是与我们机器学习中常用的聚类操作不同之处在于。