暂无个人介绍
同步与互斥设计原则数据库的一个重要能力就是为多个用户提供并发访问服务,并发度是考察数据库性能的重要指标之一。事务隔离级别定义了并发控制算法的正确性,并让用户通过选择隔离级别在正确性和高性能之间进行平衡。事务重点考虑的是数据层面的并发控制,是属于较上层的同步与互斥。实际上,数据库系统是由大量进程、线程、数据结构构成的,进程、线程会并发地访问、修改数据结构,还需要在较底层级解决数据结构的同步与互斥问题
数据后像与前滚设计原则事务的持久性要求事务提交时本次事务的修改必须完成持久化工作,而事务修改的block或page在大部分场景下并不是连续的,在持久化设备上表现为大量的随机IO。通过记录后像,可以将随机IO转换为对持久化设备更为有利的顺序IO,并将dirty block或dirty page(指被修改过但尚未完成持久化的block或page)的多次修改合并,节约block或page的持久化次数。后
空间管理与数据布局 设计原则数据库设计数据布局和空间管理应当考虑哪些因素呢?又有哪些设计原则?本章先提出问题,看有哪些因素要考虑,然后选取Oracle和MySQL这2款最流行的数据库,看看它们是如何进行空间管理的。我们先看看有哪些因素要考虑:数据最终要反映到持久设备上,空间管理首先要考虑持久设备(如磁盘)的物理特性,考虑如何组织数据才能最大化地发挥存储设备的效率;如何协调平衡多样化的数据,如超大的
同步与互斥设计原则数据库的一个重要能力就是为多个用户提供并发访问服务,并发度是考察数据库性能的重要指标之一。事务隔离级别定义了并发控制算法的正确性,并让用户通过选择隔离级别在正确性和高性能之间进行平衡。事务重点考虑的是数据层面的并发控制,是属于较上层的同步与互斥。实际上,数据库系统是由大量进程、线程、数据结构构成的,进程、线程会并发地访问、修改数据结构,还需要在较底层级解决数据结构的同步与互斥问题
缓存与检查点设计原则数据缓冲区与检查点是相辅相成的,所以放在同一个章节介绍。由于CPU与持久化设备之间存在巨大的速度差距,所以在内存中引入缓冲区缩小这个差距。从读的角度来看,将热点数据或预判用户可能读取的数据提前加载到内存中,从而将持久化设备的读时延和带宽提升至内存的时延和带宽。从写的角度来看,直接修改缓冲区中的数据而不是磁盘中的数据,可以带来两方面的优势。其一,将持久化设备的写时延和带宽提升至内
数据后像与前滚设计原则事务的持久性要求事务提交时本次事务的修改必须完成持久化工作,而事务修改的block或page在大部分场景下并不是连续的,在持久化设备上表现为大量的随机IO。通过记录后像,可以将随机IO转换为对持久化设备更为有利的顺序IO,并将dirty block或dirty page(指被修改过但尚未完成持久化的block或page)的多次修改合并,节约block或page的持久化次数。后
同步与互斥设计原则数据库的一个重要能力就是为多个用户提供并发访问服务,并发度是考察数据库性能的重要指标之一。事务隔离级别定义了并发控制算法的正确性,并让用户通过选择隔离级别在正确性和高性能之间进行平衡。事务重点考虑的是数据层面的并发控制,是属于较上层的同步与互斥。实际上,数据库系统是由大量进程、线程、数据结构构成的,进程、线程会并发地访问、修改数据结构,还需要在较底层级解决数据结构的同步与互斥问题
数据后像与前滚设计原则事务的持久性要求事务提交时本次事务的修改必须完成持久化工作,而事务修改的block或page在大部分场景下并不是连续的,在持久化设备上表现为大量的随机IO。通过记录后像,可以将随机IO转换为对持久化设备更为有利的顺序IO,并将dirty block或dirty page(指被修改过但尚未完成持久化的block或page)的多次修改合并,节约block或page的持久化次数。后
并发控制设计原则事务的并发控制首先要保证并发执行的正确性,满足可序列化要求,即并发执行的结果和某种串行执行的结果是一致的,然后在满足正确性的前提下尽可能地获得最高的并发度。当然在某些业务场景下,可以适当牺牲部分正确性(即接受某些异常),从而获得更高的并发性能。并发控制大体分为悲观算法和乐观算法,为了尽可能深入了解各种算法的优缺点,本章在Oracle、MySQL的基础上增加了PostgreSQL、C
同步与互斥设计原则数据库的一个重要能力就是为多个用户提供并发访问服务,并发度是考察数据库性能的重要指标之一。事务隔离级别定义了并发控制算法的正确性,并让用户通过选择隔离级别在正确性和高性能之间进行平衡。事务重点考虑的是数据层面的并发控制,是属于较上层的同步与互斥。实际上,数据库系统是由大量进程、线程、数据结构构成的,进程、线程会并发地访问、修改数据结构,还需要在较底层级解决数据结构的同步与互斥问题
数据后像与前滚设计原则事务的持久性要求事务提交时本次事务的修改必须完成持久化工作,而事务修改的block或page在大部分场景下并不是连续的,在持久化设备上表现为大量的随机IO。通过记录后像,可以将随机IO转换为对持久化设备更为有利的顺序IO,并将dirty block或dirty page(指被修改过但尚未完成持久化的block或page)的多次修改合并,节约block或page的持久化次数。后
同步与互斥设计原则数据库的一个重要能力就是为多个用户提供并发访问服务,并发度是考察数据库性能的重要指标之一。事务隔离级别定义了并发控制算法的正确性,并让用户通过选择隔离级别在正确性和高性能之间进行平衡。事务重点考虑的是数据层面的并发控制,是属于较上层的同步与互斥。实际上,数据库系统是由大量进程、线程、数据结构构成的,进程、线程会并发地访问、修改数据结构,还需要在较底层级解决数据结构的同步与互斥问题
数据后像与前滚设计原则事务的持久性要求事务提交时本次事务的修改必须完成持久化工作,而事务修改的block或page在大部分场景下并不是连续的,在持久化设备上表现为大量的随机IO。通过记录后像,可以将随机IO转换为对持久化设备更为有利的顺序IO,并将dirty block或dirty page(指被修改过但尚未完成持久化的block或page)的多次修改合并,节约block或page的持久化次数。后
同步与互斥设计原则数据库的一个重要能力就是为多个用户提供并发访问服务,并发度是考察数据库性能的重要指标之一。事务隔离级别定义了并发控制算法的正确性,并让用户通过选择隔离级别在正确性和高性能之间进行平衡。事务重点考虑的是数据层面的并发控制,是属于较上层的同步与互斥。实际上,数据库系统是由大量进程、线程、数据结构构成的,进程、线程会并发地访问、修改数据结构,还需要在较底层级解决数据结构的同步与互斥问题
并发控制设计原则事务的并发控制首先要保证并发执行的正确性,满足可序列化要求,即并发执行的结果和某种串行执行的结果是一致的,然后在满足正确性的前提下尽可能地获得最高的并发度。当然在某些业务场景下,可以适当牺牲部分正确性(即接受某些异常),从而获得更高的并发性能。并发控制大体分为悲观算法和乐观算法,为了尽可能深入了解各种算法的优缺点,本章在Oracle、MySQL的基础上增加了PostgreSQL、C
并发控制设计原则事务的并发控制首先要保证并发执行的正确性,满足可序列化要求,即并发执行的结果和某种串行执行的结果是一致的,然后在满足正确性的前提下尽可能地获得最高的并发度。当然在某些业务场景下,可以适当牺牲部分正确性(即接受某些异常),从而获得更高的并发性能。并发控制大体分为悲观算法和乐观算法,为了尽可能深入了解各种算法的优缺点,本章在Oracle、MySQL的基础上增加了PostgreSQL、C
数据后像与前滚设计原则事务的持久性要求事务提交时本次事务的修改必须完成持久化工作,而事务修改的block或page在大部分场景下并不是连续的,在持久化设备上表现为大量的随机IO。通过记录后像,可以将随机IO转换为对持久化设备更为有利的顺序IO,并将dirty block或dirty page(指被修改过但尚未完成持久化的block或page)的多次修改合并,节约block或page的持久化次数。后
并发控制设计原则事务的并发控制首先要保证并发执行的正确性,满足可序列化要求,即并发执行的结果和某种串行执行的结果是一致的,然后在满足正确性的前提下尽可能地获得最高的并发度。当然在某些业务场景下,可以适当牺牲部分正确性(即接受某些异常),从而获得更高的并发性能。并发控制大体分为悲观算法和乐观算法,为了尽可能深入了解各种算法的优缺点,本章在Oracle、MySQL的基础上增加了PostgreSQL、C
数据后像与前滚设计原则事务的持久性要求事务提交时本次事务的修改必须完成持久化工作,而事务修改的block或page在大部分场景下并不是连续的,在持久化设备上表现为大量的随机IO。通过记录后像,可以将随机IO转换为对持久化设备更为有利的顺序IO,并将dirty block或dirty page(指被修改过但尚未完成持久化的block或page)的多次修改合并,节约block或page的持久化次数。后
并发控制设计原则事务的并发控制首先要保证并发执行的正确性,满足可序列化要求,即并发执行的结果和某种串行执行的结果是一致的,然后在满足正确性的前提下尽可能地获得最高的并发度。当然在某些业务场景下,可以适当牺牲部分正确性(即接受某些异常),从而获得更高的并发性能。并发控制大体分为悲观算法和乐观算法,为了尽可能深入了解各种算法的优缺点,本章在Oracle、MySQL的基础上增加了PostgreSQL、C
缓存与检查点设计原则数据缓冲区与检查点是相辅相成的,所以放在同一个章节介绍。由于CPU与持久化设备之间存在巨大的速度差距,所以在内存中引入缓冲区缩小这个差距。从读的角度来看,将热点数据或预判用户可能读取的数据提前加载到内存中,从而将持久化设备的读时延和带宽提升至内存的时延和带宽。从写的角度来看,直接修改缓冲区中的数据而不是磁盘中的数据,可以带来两方面的优势。其一,将持久化设备的写时延和带宽提升至内
数据后像与前滚设计原则事务的持久性要求事务提交时本次事务的修改必须完成持久化工作,而事务修改的block或page在大部分场景下并不是连续的,在持久化设备上表现为大量的随机IO。通过记录后像,可以将随机IO转换为对持久化设备更为有利的顺序IO,并将dirty block或dirty page(指被修改过但尚未完成持久化的block或page)的多次修改合并,节约block或page的持久化次数。后
并发控制设计原则事务的并发控制首先要保证并发执行的正确性,满足可序列化要求,即并发执行的结果和某种串行执行的结果是一致的,然后在满足正确性的前提下尽可能地获得最高的并发度。当然在某些业务场景下,可以适当牺牲部分正确性(即接受某些异常),从而获得更高的并发性能。并发控制大体分为悲观算法和乐观算法,为了尽可能深入了解各种算法的优缺点,本章在Oracle、MySQL的基础上增加了PostgreSQL、C
空间管理与数据布局 设计原则数据库设计数据布局和空间管理应当考虑哪些因素呢?又有哪些设计原则?本章先提出问题,看有哪些因素要考虑,然后选取Oracle和MySQL这2款最流行的数据库,看看它们是如何进行空间管理的。我们先看看有哪些因素要考虑:数据最终要反映到持久设备上,空间管理首先要考虑持久设备(如磁盘)的物理特性,考虑如何组织数据才能最大化地发挥存储设备的效率;如何协调平衡多样化的数据,如超大的
事务综述事务是数据库提供服务的基本逻辑单元,其满足如下关键特性(ACID):原子性(atomicity):归属于单个事务的所有动作要么全部被执行,要么全部都不执行;一致性(consistency):事务的运行不改变数据的一致性,事务能够正确地将目标数据集合从一个一致性状态变换为另一个一致性状态,事务运行过程中数据的状态可能是不一致的,但在执行前和执行后一定是一致的;隔离性(isolation):任
缓存与检查点设计原则数据缓冲区与检查点是相辅相成的,所以放在同一个章节介绍。由于CPU与持久化设备之间存在巨大的速度差距,所以在内存中引入缓冲区缩小这个差距。从读的角度来看,将热点数据或预判用户可能读取的数据提前加载到内存中,从而将持久化设备的读时延和带宽提升至内存的时延和带宽。从写的角度来看,直接修改缓冲区中的数据而不是磁盘中的数据,可以带来两方面的优势。其一,将持久化设备的写时延和带宽提升至内
并发控制设计原则事务的并发控制首先要保证并发执行的正确性,满足可序列化要求,即并发执行的结果和某种串行执行的结果是一致的,然后在满足正确性的前提下尽可能地获得最高的并发度。当然在某些业务场景下,可以适当牺牲部分正确性(即接受某些异常),从而获得更高的并发性能。并发控制大体分为悲观算法和乐观算法,为了尽可能深入了解各种算法的优缺点,本章在Oracle、MySQL的基础上增加了PostgreSQL、C
空间管理与数据布局 设计原则数据库设计数据布局和空间管理应当考虑哪些因素呢?又有哪些设计原则?本章先提出问题,看有哪些因素要考虑,然后选取Oracle和MySQL这2款最流行的数据库,看看它们是如何进行空间管理的。我们先看看有哪些因素要考虑:数据最终要反映到持久设备上,空间管理首先要考虑持久设备(如磁盘)的物理特性,考虑如何组织数据才能最大化地发挥存储设备的效率;如何协调平衡多样化的数据,如超大的
并发控制设计原则事务的并发控制首先要保证并发执行的正确性,满足可序列化要求,即并发执行的结果和某种串行执行的结果是一致的,然后在满足正确性的前提下尽可能地获得最高的并发度。当然在某些业务场景下,可以适当牺牲部分正确性(即接受某些异常),从而获得更高的并发性能。并发控制大体分为悲观算法和乐观算法,为了尽可能深入了解各种算法的优缺点,本章在Oracle、MySQL的基础上增加了PostgreSQL、C
缓存与检查点设计原则数据缓冲区与检查点是相辅相成的,所以放在同一个章节介绍。由于CPU与持久化设备之间存在巨大的速度差距,所以在内存中引入缓冲区缩小这个差距。从读的角度来看,将热点数据或预判用户可能读取的数据提前加载到内存中,从而将持久化设备的读时延和带宽提升至内存的时延和带宽。从写的角度来看,直接修改缓冲区中的数据而不是磁盘中的数据,可以带来两方面的优势。其一,将持久化设备的写时延和带宽提升至内
并发控制设计原则事务的并发控制首先要保证并发执行的正确性,满足可序列化要求,即并发执行的结果和某种串行执行的结果是一致的,然后在满足正确性的前提下尽可能地获得最高的并发度。当然在某些业务场景下,可以适当牺牲部分正确性(即接受某些异常),从而获得更高的并发性能。并发控制大体分为悲观算法和乐观算法,为了尽可能深入了解各种算法的优缺点,本章在Oracle、MySQL的基础上增加了PostgreSQL、C
缓存与检查点设计原则数据缓冲区与检查点是相辅相成的,所以放在同一个章节介绍。由于CPU与持久化设备之间存在巨大的速度差距,所以在内存中引入缓冲区缩小这个差距。从读的角度来看,将热点数据或预判用户可能读取的数据提前加载到内存中,从而将持久化设备的读时延和带宽提升至内存的时延和带宽。从写的角度来看,直接修改缓冲区中的数据而不是磁盘中的数据,可以带来两方面的优势。其一,将持久化设备的写时延和带宽提升至内
缓存与检查点设计原则数据缓冲区与检查点是相辅相成的,所以放在同一个章节介绍。由于CPU与持久化设备之间存在巨大的速度差距,所以在内存中引入缓冲区缩小这个差距。从读的角度来看,将热点数据或预判用户可能读取的数据提前加载到内存中,从而将持久化设备的读时延和带宽提升至内存的时延和带宽。从写的角度来看,直接修改缓冲区中的数据而不是磁盘中的数据,可以带来两方面的优势。其一,将持久化设备的写时延和带宽提升至内
并发控制设计原则事务的并发控制首先要保证并发执行的正确性,满足可序列化要求,即并发执行的结果和某种串行执行的结果是一致的,然后在满足正确性的前提下尽可能地获得最高的并发度。当然在某些业务场景下,可以适当牺牲部分正确性(即接受某些异常),从而获得更高的并发性能。并发控制大体分为悲观算法和乐观算法,为了尽可能深入了解各种算法的优缺点,本章在Oracle、MySQL的基础上增加了PostgreSQL、C
空间管理与数据布局 设计原则数据库设计数据布局和空间管理应当考虑哪些因素呢?又有哪些设计原则?本章先提出问题,看有哪些因素要考虑,然后选取Oracle和MySQL这2款最流行的数据库,看看它们是如何进行空间管理的。我们先看看有哪些因素要考虑:数据最终要反映到持久设备上,空间管理首先要考虑持久设备(如磁盘)的物理特性,考虑如何组织数据才能最大化地发挥存储设备的效率;如何协调平衡多样化的数据,如超大的
并发控制设计原则事务的并发控制首先要保证并发执行的正确性,满足可序列化要求,即并发执行的结果和某种串行执行的结果是一致的,然后在满足正确性的前提下尽可能地获得最高的并发度。当然在某些业务场景下,可以适当牺牲部分正确性(即接受某些异常),从而获得更高的并发性能。并发控制大体分为悲观算法和乐观算法,为了尽可能深入了解各种算法的优缺点,本章在Oracle、MySQL的基础上增加了PostgreSQL、C
缓存与检查点设计原则数据缓冲区与检查点是相辅相成的,所以放在同一个章节介绍。由于CPU与持久化设备之间存在巨大的速度差距,所以在内存中引入缓冲区缩小这个差距。从读的角度来看,将热点数据或预判用户可能读取的数据提前加载到内存中,从而将持久化设备的读时延和带宽提升至内存的时延和带宽。从写的角度来看,直接修改缓冲区中的数据而不是磁盘中的数据,可以带来两方面的优势。其一,将持久化设备的写时延和带宽提升至内
并发控制设计原则事务的并发控制首先要保证并发执行的正确性,满足可序列化要求,即并发执行的结果和某种串行执行的结果是一致的,然后在满足正确性的前提下尽可能地获得最高的并发度。当然在某些业务场景下,可以适当牺牲部分正确性(即接受某些异常),从而获得更高的并发性能。并发控制大体分为悲观算法和乐观算法,为了尽可能深入了解各种算法的优缺点,本章在Oracle、MySQL的基础上增加了PostgreSQL、C
空间管理与数据布局 设计原则数据库设计数据布局和空间管理应当考虑哪些因素呢?又有哪些设计原则?本章先提出问题,看有哪些因素要考虑,然后选取Oracle和MySQL这2款最流行的数据库,看看它们是如何进行空间管理的。我们先看看有哪些因素要考虑:数据最终要反映到持久设备上,空间管理首先要考虑持久设备(如磁盘)的物理特性,考虑如何组织数据才能最大化地发挥存储设备的效率;如何协调平衡多样化的数据,如超大的
并发控制设计原则事务的并发控制首先要保证并发执行的正确性,满足可序列化要求,即并发执行的结果和某种串行执行的结果是一致的,然后在满足正确性的前提下尽可能地获得最高的并发度。当然在某些业务场景下,可以适当牺牲部分正确性(即接受某些异常),从而获得更高的并发性能。并发控制大体分为悲观算法和乐观算法,为了尽可能深入了解各种算法的优缺点,本章在Oracle、MySQL的基础上增加了PostgreSQL、C
空间管理与数据布局 设计原则数据库设计数据布局和空间管理应当考虑哪些因素呢?又有哪些设计原则?本章先提出问题,看有哪些因素要考虑,然后选取Oracle和MySQL这2款最流行的数据库,看看它们是如何进行空间管理的。我们先看看有哪些因素要考虑:数据最终要反映到持久设备上,空间管理首先要考虑持久设备(如磁盘)的物理特性,考虑如何组织数据才能最大化地发挥存储设备的效率;如何协调平衡多样化的数据,如超大的